

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

ICC-ES Listing Report ELC-2502

Reissued July 2024

This listing is subject to renewal July 2025.

CSI: DIVISION: 03 00 00—CONCRETE

Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00-METALS

Section: 05 05 19—Post-Installed Concrete Anchors

Product Certification System:

The ICC-ES product-certification system includes evaluating reports of tests of standard manufactured products, prepared by accredited testing laboratories and provided by the listee, to verify compliance with applicable codes and standards. The system also involves factory inspections, and assessment and surveillance of the listee's quality system.

surveillance of the listee's quality system.

Product: POWER-STUD®+ SD2 CARBON STEEL ANCHORS, POWER-STUD®+ SD4 STAINLESS STEEL ANCHORS

AND POWER-STUD®+ SD6 STAINLESS STEEL ANCHORS IN CRACKED AND UNCRACKED CONCRETE

Listee: DEWALT

Compliance with the following standards:

■ Annex D, Anchorage of CSA A23.3 (-14, -04), Design of Concrete Structures, CSA Group.

Compliance with the following codes:

Power-Stud+ SD2 carbon steel anchors and SD4 and SD6 stainless steel anchors for cracked and uncracked concrete, as described in this listing report, are in conformance with CSA A23.3 (-14, 04), Annex D, as referenced in the applicable section of the following code editions:

■ National Building Code of Canada® 2015 and 2010

Applicable Section: Division B, Part 4, Section 4.3.3.

Description of anchors:

The anchors are torque-controlled, mechanical expansion anchors comprised of an anchor body, expansion wedge (clip), washer and hex nut. The anchor body is comprised of a high-strength carbon or stainless steel rod threaded at one end and having a tapered mandrel at the other end. The tapered mandrel is enclosed by a three-section expansion clip which freely moves around the mandrel. The expansion clip movement is restrained by the mandrel taper and by a collar.

For the Power-Stud+ SD2, the anchor body is manufactured from medium carbon steel and has minimum 0.0002-inch (5 μ m) zinc plating in accordance with ASTM B633. The expansion clip is manufactured from AlSI Type 316 stainless steel. The washer conforms to ASTM F844. The hex nuts conform to ASTM A563, Grade A. The Power-Stud+ SD2 anchor is illustrated in Figure 1.

The Power-Stud+ SD4 anchor body is manufactured from Type 304 stainless steel, and the Power-Stud+ SD6 is manufactured from Type 316 stainless steel. The expansion clips and hex nuts are manufactured from Type 316 stainless steel. Washers are manufactured from 300 series stainless steel for the Power-Stud+ SD4 and Type 316 stainless steel for the Power-Stud+ SD6. The Power-Stud+ SD4 and Power-Stud+ SD6 anchors are illustrated in Figure 1.

The anchors are installed in a predrilled hole with a hammer. When torque is applied to the nut of the installed anchor on the threaded end of the anchor body, the mandrel at the other end of the anchor is drawn into the expansion clip, forcing it outward into the sides of the predrilled hole in the base material.

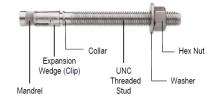
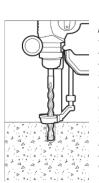
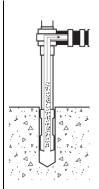


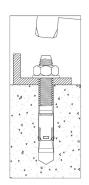
FIGURE 1—POWER-STUD+ SD2 (Left Picture), POWER-STUD+ SD4 AND POWER-STUD+ SD6 (Right Picture), ANCHOR ASSEMBLY Identification:

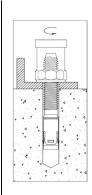
- 1. The anchors are identified by dimensional characteristics and packaging. A length letter code head marking is stamped on each anchor on the exposed threaded stud end which is visible after installation. Table 2 shows the length code identification system. For the Power-Stud+ SD2 anchors, a plus sign "+" and the number "2" are also visible after installation. For the Power-Stud+ SD4 and Power-Stud+ SD6 anchors, a plus sign "+" is also marked with a number on all anchors with the exception of the 1/4-inch-diameter (6.4 mm) anchors. The number "4" designates the Power-Stud+ SD4 and the number "6" designates the Power-Stud+ SD6. Packages are identified with the anchor name, type and size, the company name, the listing report number (ELC-2502), and the ICC-ES listing mark.
- 2. The report holder's contact information is the following:


DEWALT
701 EAST JOPPA ROAD
TOWSON, MARYLAND 21286
(800) 524-3244
www.dewalt.com
anchors@dewalt.com

Installation:


The installation parameters are provided in Figure 2, Figure 3 and Table 1. Installation of the Power-Stud+ SD2 carbon steel anchors and Power-Stud+ SD4 and Power-Stud+ SD6 stainless steel anchors must be in accordance with the manufacturer's published installation instructions (MPII) as provided in the packaging and described in Figure 3. Anchors must be installed in holes drilled into the concrete using carbide-tipped masonry drill bits complying with ANSI B212.15-1994. The nominal drill bit diameter must be equal to that of the anchor size. The predrilled hole must be cleaned free of dust and debris. The anchor must be hammered into the predrilled hole until the proper nominal embedment depth is achieved. The nut must be tightened against the washer until the installation torque values are achieved.


The DEWALT drilling systems shown collect and remove dust with a HEPA dust extractor during the hole drilling operation in dry base materials using hammer-drills (see manufacturer's published installation instructions).


1.) Using the proper drill bit size, drill a hole into the base material to the required depth. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15.

2.) Remove dust and debris from hole during drilling (e.g. dust extractor, hollow bit) or following drilling (e.g suction, forced air) to extract loose particles created by drilling.

3.) Position the washer on the anchor and thread on the nut. If installing through a fixture, drive the anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth, h_{nom}.

4.) Tighten the anchor with a torque wrench by applying the required installation torque, Tinst. Note: the threaded stud will draw up during tightening of the nut; the expansion wedge (clip) remains in original position.

FIGURE 3— POWER-STUD+ SD2, POWER-STUD+ SD4 AND POWER-STUD+ SD6 INSTALLATION INSTRUCTIONS

Anchor setting information:

TABLE 1—POWER-STUD+ SD2 ANCHOR INSTALLATION SPECIFICATIONS

						NOMINA	AL ANCH	OR SIZE	4 (inch)			
ANCHOR PROPERTY AND SETTING INFORMATION	NOTATION	UNITS	3/8 inch			l₂ ch			⁵ / ₈ inch			/ ₄ ch
Outside diameter of anchor	da	mm (in.)	9.5 (0.375)			2.7 500)			15.9 (0.625)		19.1 (0.750)	
Minimum diameter of hole clearance in fixture	dh	mm (in.)	^{7/} 16 (11.1)			16 1.3)		11/ ₁₆ (17.5)			¹³ / ₁₆ (20.6)	
Nominal drill bit diameter	d _{bit}	in.	³ / ₈ ANSI		¹ / ₂ A	ANSI		⁵ / ₈ ANSI			³/ ₄ ANSI	
Minimum nominal embedment depth ²	h _{nom}	mm	60	6	64	8	33	98	124		114	146
Effective embedment	h _{ef}	mm	51	5	51	83		83	108		95	127
Minimum concrete member thickness	h _{min}	mm	102	114	152	146	146	146	165	203	178	254
Critical edge distance	Cac	mm	165	20	03	254		203	400	254	305	305
Minimum edge distance	Cmin	mm	64	102	70	102	70	108	108		127	114
Minimum spacing distance	S _{min}	mm	89	152	152	102	152	108	10	08	152	152
Minimum hole depth	ho	mm	67	7	' 0	10	02	108	133		127	159
Minimum overall anchor length ³	lanch	mm	76	95		1	14	121	152		159	178
Installation torque	T _{inst}	N-m	27	54				81			149	
Torque wrench / socket size	-	in.	9/16		3	/4		¹⁵ / ₁₆			1 ¹ / ₈	
Nut height	-	ln.	²¹ / ₆₄	⁷ / ₁₆			³⁵ / ₆₄			⁴¹ / ₆₄		

For **SI:** 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

¹The information presented in this table is to be used in conjunction with the design criteria of CSA A23.3 (-14, -04) Annex D, as applicable.

²The embedment depth, hnom, is measured from the outside surface of the concrete member to the embedded end of the anchor prior to tightening.

³The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth and possible fixture attachment.

TABLE 2—POWER-STUD+ SD4 AND POWER-STUD+ SD6 STAINLESS STEEL ANCHOR INSTALLATION SPECIFICATIONS1

					NOMI	NAL ANCH	IOR S	IZE³ (in	ch)		
ANCHOR PROPERTY AND SETTING INFORMATION	NOTATION	UNITS	1/4	3	/8	1/2		5	/8	3	14
Outside diameter of anchor	da	mm (in.)	6.4 (0.250)	9.5 (0.375)		12.7 (0.500)			5.9 525)		9.1 750)
Minimum diameter of hole clearance in fixture	dh	mm (in.)	7.9 (⁵ / ₁₆)	11 (⁷ /	1.1 _{′16})	14.3 (⁹ / ₁₆)		17.5 (¹¹ / ₁₆)		20.6 (¹³ / ₁₆)	
Nominal drill bit diameter	d _{bit}	in.	¹/₄ ANSI	³ / ₈ A	NSI	¹/ ₂ ANSI		5/ ₈ ANSI		³/ ₄ ANSI	
Minimum nominal embedment depth ²	h _{nom}	mm	44	48		64		83		114	
Effective embedment	h _{ef}	mm	38	3	8	51		70		95	
Minimum concrete member thickness	h _{min}	mm	83	83	102	102		127		152	
Critical edge distance	Cac	mm	127	12	27	191		241		229	
Minimum edge distance	Cmin	mm	45	76	89	152	76	114	216	127	229
Minimum spacing distance	Smin	mm	51	140	76	76	152	216	127	229	127
Minimum hole depth	h _o	mm	48	5	51	67		8	9	121	
Minimum overall anchor length ²	l anch	mm	57	7	0	95		1	14	140	
Installation torque	Tinst	N-m	8	3	34	54		8	1	149	
Torque wrench / socket size	-	in.	⁷ / ₁₆	⁹ / ₁₆		3/4		¹⁵ / ₁₆		1 ¹ / ₈	
Nut height	-	ln.	7/32	21,	/64	7/16		³⁵ / ₆₄		⁴¹ / ₆₄	

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

³The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth and possible fixture attachment.

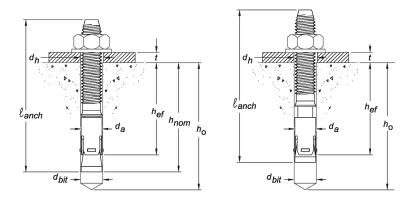


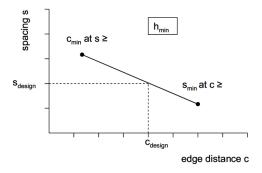
FIGURE 4—POWER-STUD+ SD2, POWER-STUD+ SD4 AND POWER-STUD+ SD6 ANCHOR DETAIL Before (Left Picture) and After (Right Picture) Application of Installation Torque

TABLE 3—POWER-STUD+ SD2, POWER-STUD+ SD4 AND POWER-STUD+ SD6 ANCHOR LENGTH CODE IDENTIFICATION SYSTEM

Length ID n		Α	В	С	D	E	F	G	Н	I	J	к	L	М	N	0	Р	Q	R	s	Т
Overall anchor	From	38	51	64	76	89	102	114	127	140	152	165	178	191	203	216	229	241	254	279	305
length, ℓ_{anch} , (mm)	Up to but not including	51	64	76	89	102	114	127	140	152	165	178	191	203	216	229	241	254	279	305	330

¹The information presented in this table is to be used in conjunction with the design criteria of CSA A23.3 (-14, -04) Annex D, as applicable.

²The embedment depth, h_{nom}, is measured from the outside surface of the concrete member to the embedded end of the anchor prior to tightening.


Ultimate Limit States Design:

Design resistance of anchors for compliance with the 2015 NBCC must be determined in accordance with CSA A23.3-14 Annex D, and this listing report.

Design resistance of anchors for compliance with the 2010 NBCC must be determined in accordance with CSA A23.3-04 Annex D, and this listing report.

Design parameters provided in Tables 1, 2, 4, 5, 6, and 7 of this listing report are based on the 2015 NBCC and 2010 NBCC (CSA A23.3-14 and CSA A23.3-04). The limit states design of anchors must comply with CSA A23.3 (-14, -04) D.5.1, except as required in CSA A23.3 (-14, -04) D.4.3.1.

Material resistance factors must be ϕ_c = 0.65 and ϕ_s = 0.85 in accordance with CSA A23.3 (-14, 04) Sections 8.4.2 and 8.4.3, and resistance modification factor, R, as given in CSA A23.3-14 Section D.5.3, or CSA A23.3-04 Section D.5.4, and noted in Tables 4, 5, 6 and 7 of this listing report, must be used for load combinations calculated in accordance with Division B, Part 4, Section 4.1.3 of the 2015 and 2010 NBCC, or Annex C of CSA A23.3 (-14, -04). The nominal steel strength N_{sa} or V_{sa} , in Tables 4, 5, 6 and 7 of this listing report must be multiplied by ϕ_s and R to determine the factored resistance N_{sar} or V_{sar} . The nominal pullout strengths $N_{p,uncr}$, $N_{p,cr}$ or $N_{p,eq}$ in Tables 4, and 6 of this listing report must be multiplied by ϕ_c and R to determine the factored resistance $N_{cpr,uncr}$, $N_{cpr,cr}$, or $N_{cpr,eq}$, respectively.

This interpolation applies to the cases when two sets of minimum edge distances, c_{min} , and minimum spacing distances, s_{min} , are given in Tables 1, and 2 for a given anchor diameter under the same effective embedment depth, h_{ef} , and corresponding minimum member thickness, h_{min} .

FIGURE 5—INTERPOLATION OF MINIMUM EDGE DISTANCE AND MINIMUM ANCHOR SPACING

TABLE 4—TENSION DESIGN INFORMATION FOR POWER-STUD+ SD2 ANCHORS IN CONCRETE^{1,2}

						Nominal A	nchor Siz	ze (inch)				
Design Characteristic		Notation	Units	3/8		1/2		5/8	3/	4		
Anchor category		1, 2 or 3	-	1		1		1	1			
	STI	EEL STRENG	TH IN TEN	NSION ⁴								
Minimum specified yield strength	(neck)	f _{ya}	N/mm ²	662		586	6 586			33		
Minimum specified ultimate stren	gth (neck)	f _{uta}	N/mm ²	827		731	7	' 31	620			
Effective tensile stress area (nec	k)	A _{se,N}	mm²	35.6		65.0	10	04.5	153	3.2		
Steel strength in tension ⁵	Nsa	kN	29.5		46.5	5	8.2	94	.4			
Resistance modification factor fo	R	-				0.80		_				
	CONCRETE	BREAKOUT	STRENG	TH IN TENSIO	ON ⁹							
Effective embedment	h _{ef}	mm	51	51	83	83	108	95	127			
Effectiveness factor for uncracke	Kuncr	-	10		10		10		10			
Effectiveness factor for cracked of	Kcr	-	7		7		7	7	7			
Modification factor for cracked ar	$\psi_{c,N}$	-	1.0 See note 6	Se	1.0 ee note 6		1.0 note 6	1. See n	-			
Critical edge distance		Cac	mm			Se	e Table 1					
Resistance modification factor fo concrete failure modes, Condition	n B ³	R	-		1.0							
	PULI	OUT STREN	IGTH IN TI	ENSION ⁹								
Characteristic pullout strength, u	ncracked concrete (217.2 MPa) ⁷	N _{p,uncr}	kN	12.3	See note		See note 8	See note 8	See note 8	See note 8		
Characteristic pullout strength, cracked concrete (17.2 MPa) ⁷		N _{p,cr}	kN	9.6	See note	1 10 5	See note 8	See note 8	See note 8	35.1		
Resistance modification factor fo pullout strength, Condition B ³	r tension,	R	-				1.0					
	PULLOUT STRENGT	TH IN TENSIO	ON FOR SE	EISMIC APPL	LICAT	ONS ⁹						
Characteristic pullout strength, se	eismic (17.2 MPa) ^{7,10}	N _{p,eq}	kN	9.6	See note	1 10 5	See note 8	See Note 8	See note 8	35.1		
Resistance modification factor for pullout strength, seismic, Condition B ³			-		•	•	1.0	•	•	•		
Mean axial stiffness values	Uncracked concrete	β	kN/mm	1517		1258		998	74	17		
service load range ¹¹	Cracked concrete	β	kN/mm	87		100		113	126			

¹The data in this table is intended to be used with the design provisions of CSA A23.3 (-14, -04) Annex D, as applicable; for anchors resisting seismic load combinations the additional requirements CSA A23.3 (-14, -04) D.4.3, as applicable, must apply

²Installation must comply with published instructions and details.

³All values of R for use with the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or 2010 NBCC, CSA A23.3-14 Annex C or CSA A23.3-04 Annex C, as applicable. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 D.5.3(c) or CSA A23.3-04 D.5.4(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used

⁴The Power-Stud+ SD2 is considered a ductile steel element in tension as defined by CSA A23.3-14 D.2 or CSA A23.3-04 D.2, as applicable.

⁵Tabulated values for steel strength in tension are based on test results per ACI 355.2 and must be used for design in lieu of calculation.

⁶For all design cases $\Psi_{c,P}$ = 1.0. The appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked concrete (k_{uncr}) must be used. ⁷For all design cases $\Psi_{c,P}$ = 1.0. For the calculation of N_{cpr} , see CSA A23.3 (-14, -04) D.6.3.

[®]Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

⁹Anchors are permitted to be used in lightweight concrete in accordance with CSA A23.3 (-14, -04) D.4.

¹⁰Tabulated values for characteristic pullout strength in tension are for seismic applications are based on test results per ACI 355.2 (Section 9.5), as referenced in CSA A23.3-14 Annex D, Section D.4.3.4.

¹¹Actual stiffness of the mean value varies considerably depending on concrete strength, loading and geometry of application.

TABLE 5—SHEAR DESIGN INFORMATION FOR POWER-STUD+ SD2 ANCHORS IN CONCRETE^{1,2}

			Nominal Anchor Diameter (inch)									
Design Characteristic	Notation	Units	3/8		1/2	5	/8	3	3/4			
Anchor category	1, 2 or 3	-	1		1		1	1				
	STE	EL STRENC	STH IN SH	EAR ⁴		,		_				
Minimum specified yield strength (threads)	d strength (threads)											
Minimum specified ultimate strength (threads)	f uta	N/mm ²	690	(607	60	07	5	51			
Effective tensile stress area (threads)	A _{se,V}	mm²	50.0	6	65.7 104.9			215.8				
Steel strength in shear ⁵	V _{sa}	kN	13.9	2	21.4	45	5.2	56.1				
Resistance modification factor for steel strength, shear ^{3,4}	R	-	0.75									
	CONCRETE	BREAKOUT	STRENG	TH IN SHE	AR ⁶							
Load-bearing length of anchor (hef or 8do, whichever is less)	le	mm	51	51	83	83	108	95	127			
Nominal anchor diameter	da	mm	9.5	12.7 15.9			1:	19.1				
Resistance modification factor for shear, concrete failure modes, Condition B ³	R	-				1.0		•				
	PRYC	OUT STREN	IGTH IN S	HEAR ⁶								
Coefficient for pryout strength (1.0 for $h_{ef} < 2.5$ in., 2.0 for $h_{ef} \ge 2.5$ in.)	Kcp	-	1.0	1.0	2.0	2.0	2.0	2.0	2.0			
Effective embedment	h _{ef}	mm	51	51	83	83	108	95	127			
Resistance modification factor for pryout strength ³	R	-				1.0		•				
STEEL	STRENGTH	IN SHEAR	FOR SEIS	MIC APPL	ICATIONS							
Steel strength in shear, seismic ⁷	V _{sa,eq}	kN	11.0	2	21.4	30).1	3	5.9			
Resistance modification factor for steel strength, shear, seismic ³	R	-	0.75									

¹The data in this table is intended to be used with the design provisions of CSA A23.3 (-14, -04) Annex D, as applicable; for anchors resisting seismic load combinations the additional requirements CSA A23.3 (-14, -04) D.4.3, as applicable, must apply..

²Installation must comply with published instructions and details.

³All values of R for use with the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or 2010 NBCC, CSA A23.3-14 Annex C or CSA A23.3-04 Annex C, as applicable. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 D.5.3(c) or CSA A23.3-04 D.5.4(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used.

⁴The Power-Stud+ SD2 is considered a ductile steel element as defined by CSA A23.3-14 D.2 or CSA A23.3-04 D.2, as applicable.

⁵Tabulated values for steel strength in shear are based on test results per ACI 355.2, Section 9.4 and must be used for design. These tabulated values are lower than calculated results using equation D.31 in CSA A23.3-14.

⁶Anchors are permitted to be used in lightweight concrete in accordance with CSA A23.3 (-14, -04) D.4.6.

⁷Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2 (Section 9.6), as referenced in CSA A23.3-14 Annex D, Section D.4.3.4.

TABLE 6—TENSION DESIGN INFORMATION FOR POWER-STUD+ SD4 AND POWER-STUD+ SD6 STAINLESS STEEL ANCHORS IN CONCRETE^{1,2}

		N 4 0			Nomina	I Anchor Siz	e (inch)					
Design Characteristic		Notation	Units	1/4	3/8	1/2	⁵ / ₈	3/4				
Anchor category		1, 2 or 3	-	1	1	1	1	1				
	ST	EEL STRENG	TH IN TENS	ION								
Minimum specified yield strengt	th (neck)	f _{ya}	N/mm²	414	414	414	414	414				
Minimum specified ultimate stre	ength (neck)	f uta	N/mm ²	621	621	621	621	621				
Effective tensile stress area (ne	ck)	A _{se,N}	mm ²	16.1	34.2	65.8	105.2	151				
Steel strength in tension	N _{sa}	kN	10.0	21.3	40.8	65.1	95.1					
Resistance modification factor f	or steel strength, tension ^{3,4}	R	-	0.80								
	CONCRETE	BREAKOUT	STRENGTH	IN TENSION	7							
Effective embedment	h _{ef}	mm	38	38	51	70	95					
Effectiveness factor for uncrack	Kuncr	-	10	10	10	10	10					
Effectiveness factor for cracked	Kcr	-	Not applicable	7	9	9	9					
Modification factor for cracked a	$\psi_{c,N}$	-	1.0 See note 5	1.0 See note 5	1.0 See note 5	1.0 See note 5	1.0 See note 5					
Critical edge distance		Cac	mm			See Table 2						
Resistance modification factor f concrete failure modes, Condition	•	R	-	1.0								
	PULI	OUT STREN	GTH IN TEN	SION ⁸								
Characteristic pullout strength, uncracked concrete (17.2 MPa)	6	N _{p,uncr}	kN	6.7	See note 7	See note 7	See note 7	37.8				
Characteristic pullout strength, cracked concrete (17.2 MPa) ⁶		N _{p,cr}	kN	Not applicable 7.3 See note 7			See note 7	See note 7				
Resistance modification factor f pullout strength, Condition B ³	or tension,	R	-		1.0							
	PULLOUT STRENGT	TH IN TENSIO	N FOR SEIS	MIC APPLIC	ATIONS8							
Characteristic pullout strength,	N _{p,eq}	kN	Not applicable	7.3	See note 7	See note 7	See note 7					
Resistance modification factor f Condition B ³	R	-		1.0								
Mean axial stiffness values for	Uncracked concrete	β	kN/mm	30,060	86,000	80,500	41,000	69,300				
service load range ¹⁰	Cracked concrete	β	kN/mm	Not applicable	40,000	68,800	33,800	13,400				

¹The data in this table is intended to be used with the design provisions of CSA A23.3 (-14, -04) Annex D, as applicable; for anchors resisting seismic load combinations the additional requirements CSA A23.3 (-14, -04) D.4.3, as applicable, must apply.

²Installation must comply with published instructions and details

³All values of R for use with the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or 2010 NBCC, CSA A23.3-14 Annex C or CSA A23.3-04 Annex C, as applicable. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 D.5.3(c) or CSA A23.3-04 D.5.4(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used.

⁴The anchors are ductile steel elements as defined in CSA A23.3-14 D.2 or CSA A23.3-04 D.2, as applicable. Tabulated values for steel strength in tension are based on test results per ACI 355.2 and must be used for design.

⁵For all design cases $\Psi_{c,N}$ = 1.0. The appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked concrete (k_{uncr}) must be used.

⁶For all design cases $\Psi_{c,P}$ = 1.0. For the calculation of N_{cpr} , see CSA A23.3 (-14, -04) D.6.3.

Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

⁶Anchors are permitted to be used in lightweight concrete in accordance with CSA A23.3 (-14, -04) D.4.6.
⁹Tabulated values for characteristic pullout strength in tension are for seismic applications are based on test results per ACI 355.2 (Section 9.5), as referenced in CSA A23.3-14 Annex D, Section D.4.3.4.

10 Actual stiffness of the mean value varies depending on concrete strength, loading and geometry of application.

TABLE 7—SHEAR DESIGN INFORMATION FOR POWER-STUD+ SD4 AND POWER-STUD+ SD6 STAINLESS STEEL ANCHORS IN CONCRETE^{1,2}

	ı							
Design Observatoristic	N-4-4:	11		Nominal A	Anchor D	iameter		
Design Characteristic	Notation	Units	1/4	3/8	1/2	5/8	3/4	
Anchor category	1, 2 or 3	-	1	1	1	1	1	
STEEL ST	RENGTH IN SH	IEAR⁴						
Minimum specified yield strength (threads)	f _{ya}	N/mm ²	414	414	414	414	414	
Minimum specified ultimate strength (threads)	f _{uta}	N/mm ²	621	621	621	621	621	
Effective shear stress area (threads)	A _{se,V}	mm ²	20.5	50.3	91.6	145.8	212	
Steel strength in shear ⁵	V _{sa}	kN	5.0	6.6	14.1	33.2	53,2	
Resistance modification factor for steel strength, shear ^{3,4}	R	-	0.75					
CONCRETE BREAK	OUT STRENG	TH IN SH	EAR ⁶					
Load-bearing length of anchor (hef or 8do, whichever is less)	le	mm	38	38	51	70	95	
Nominal anchor diameter	da	mm	6.4	9.5	12.7	15.9	19.1	
Resistance modification factor for shear, concrete failure modes, Condition B ³	R	-			1.0			
PRYOUT ST	RENGTH IN S	HEAR ⁶						
Coefficient for pryout strength	Kcp	-	1.0	1.0	1.0	2.0	2.0	
Effective embedment	h _{ef}	mm	38	38	51	70	95	
Resistance modification factor for pryout strength ³	nodification factor for pryout strength ³ R - 1.0							
STEEL STRENGTH IN SH	EAR FOR SEIS	MIC APPI	LICATIONS					
Steel strength in shear, seismic ⁷	V _{sa,eq}	kN	Not applicable	5.8	12.3	23.3	34.45	
Resistance modification factor for steel strength, shear, seismic ³	R	-			0.75			

¹The data in this table is intended to be used with the design provisions of CSA A23.3 (-14, -04) Annex D, as applicable; for anchors resisting seismic load combinations the additional requirements CSA A23.3 (-14, -04) D.4.3, as applicable, must apply.

²Installation must comply with published instructions and details.

³All values of R for use with the load combinations of Division B, Part 4, Section 4.1.3 of the 2015 NBCC or 2010 NBCC, CSA A23.3-14 Annex C or CSA A23.3-04 Annex C, as applicable. Condition B applies where supplementary reinforcement in conformance with CSA A23.3-14 D.5.3(c) or CSA A23.3-04 D.5.4(c), as applicable, is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the strength reduction factors associated with Condition A may be used.

⁴The anchors are ductile steel elements as defined by CSA A23.3-14 D.2 or CSA A23.3-04 D.2, as applicable.

⁵Tabulated values for steel strength in shear must be used for design. These tabulated values are lower than calculated results using equation D.31 in CSA A23.3-14.

⁶Anchors are permitted to be used in lightweight concrete in accordance with CSA A23.3 (-14, -04) D.4.6.

⁷Tabulated values for steel strength in shear are for seismic applications are based on test results per ACI 355.2 (Section 9.6), as referenced in CSA A23.3-14 Annex D, Section D.4.3.4.

Conditions of listing:

- 1. The listing report addresses only conformance with the standards and code sections noted above.
- Approval of the product's use is the sole responsibility of the local code official.
- 3. The listing report applies only to the materials tested and as submitted for review by ICC-ES.
- Anchor sizes, dimensions, minimum embedment depths and other installation parameters are as set forth in this listing report.
- 5. The 6.4 mm (¹/₄-inch) anchors must be installed in uncracked normal-weight or lightweight concrete; 9.5 mm to 31.8 mm (³/₈-inch to 1¹/₄-inch) anchors must be installed in cracked or uncracked normal-weight or lightweight concrete having a specified compressive strength, *f*′_c, of 17.2 MPa to 58.6 MPa.
- 5. The values of f'_c , used for calculation purposes must not exceed 55 MPa.
- 7. Limit states design values must be established in accordance with this listing report.
- The use of fatigue or shock loading for these anchors under such conditions is beyond the scope of this listing report.
- Anchors [except the 6.4 mm (¹/₄-inch)] may be used to resist short-term loading due to wind or seismic forces in locations designed according to NBCC 2015 and NBCC 2010.
- 10. Where not otherwise prohibited in the code as referenced in CSA A23.3 (-14, -04), Power-Stud+ SD2, SD4, and SD6 expansion anchors are permitted for use with fire-resistance-rated construction provided that at least one of the following conditions is fulfilled:
 - a. Anchors are used to resist wind or seismic forces only.
 - b. Anchors that support a fire-resistance-rated envelope or a fire- resistance-rated membrane are protected by approved fire-resistance- rated materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - c. Anchors are used to support nonstructural elements.
- 11. Use of zinc-coated carbon steel anchors is limited to dry, interior locations.
- 12. Use of anchors made of stainless steel as specified in this report are permitted for exterior exposure and damp environments.
- 13. Steel anchoring materials in contact with preservative-treated wood and fire-retardant-treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153.