

# **ICC-ES Evaluation Report**

### ESR-1990

Reissued September 2023 Revised April 2025 Subject to renewal September 2025

This report also contains: - LABC Supplement

- CBC Supplement
- FBC Supplement

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

Copyright © 2025 ICC Evaluation Service, LLC. All rights reserved.

| DIVISION: 03 00 00—<br>CONCRETE<br>Section: 03 16 00—<br>Concrete Anchors<br>DIVISION: 05 00 00 —<br>METALS<br>Section: 05 05 19 —<br>Post-Installed Concrete<br>Anchors | REPORT HOLDER:<br>fischerwerke GmbH &<br>Co. KG<br>fischer | EVALUATION SUBJECT:<br>fischer FIS EM PLUS<br>ADHESIVE ANCHORING<br>SYSTEM AND POST<br>INSTALLED<br>REINFORCING BAR<br>CONNECTIONS FOR<br>CRACKED AND<br>UNCRACKED<br>CONCRETE |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

# **1.0 EVALUATION SCOPE**

## Compliance with the following codes:

- 2024, 2021, 2018, and 2015 International Building Code® (IBC)
- 2024, 2021, 2018, and 2015 International Residential Code® (IRC)

### **Property evaluated:**

Structural

# **2.0 USES**

Adhesive anchors installed using the fischer FIS EM Plus Adhesive Anchoring System are post-installed adhesive anchors and the post-installed reinforcing bars are used as reinforcing bar connections (for development length and splice length) to resist static, wind and earthquake (IBC Seismic Design Categories A through F) tension and shear loads in cracked and uncracked normal-weight concrete having a specified compressive strength,  $f'_c$ , of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

The anchoring system complies with the requirements for anchors as described in Section 1901.3 of the 2024, 2021, 2018 and 2015 IBC. The anchor systems may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

The post-installed reinforcing bar connections are an alternative to cast-in-place reinforcing bars governed by ACI 318 and IBC Chapter 19.

# **3.0 DESCRIPTION**

## 3.1 General:

The fischer FIS EM Plus Adhesive Anchor System is comprised of the following components:

- Adhesive packaged in cartridges: fischer FIS EM Plus 300, fischer FIS EM Plus 390 S, fischer FIS EM Plus 585 S, or fischer FIS EM Plus 1500 S
- Adhesive mixing and dispensing equipment
- Equipment for hole cleaning and adhesive injection
- An anchor element (continuously threaded steel rod or a deformed steel reinforcing bar)





- Equipment for hole cleaning and adhesive injection
- An anchor element (continuously threaded steel rod or a deformed steel reinforcing bar)

fischer FIS EM Plus adhesive may only be used with continuously threaded steel rods, internal threaded anchors or deformed steel reinforcing bars described in <u>Tables 2</u>, <u>3</u>, <u>4</u>, and <u>5</u> and depicted in <u>Figures 4</u> and <u>7</u> of this report. The primary components of the fischer adhesive anchor system, including the fischer FIS EM Plus Adhesive and the anchoring elements are shown in <u>Figure 8</u> of this report.

The manufacturer's printed installation instructions (MPII), as included with each adhesive unit package, are shown in <u>Figure 6</u> of this report. The adhesive is also referred to as "mortar" in the installation instructions.

## 3.2 Materials:

**3.2.1 fischer FIS EM Plus Adhesive:** fischer FIS EM Plus Adhesive is an injectable epoxy adhesive. The two components are kept separate in a dual-chambered cartridge. The two components combine and react when dispensed through the static mixing nozzle FIS MR Plus (10.1 oz. or 13.2 oz. cartridge) or FIS UMR (19.8 oz. or 50.7 oz. cartridge) attached to the manifold. The system is labeled fischer FIS EM Plus 300 [10.1 oz (300 ml)], fischer FIS EM Plus 390 S [13.2 oz (390 ml)], fischer FIS EM Plus 585 S [19.8 oz. (585 ml)] or fischer FIS EM Plus 1500 S [50.7 oz. (1500 ml)]. The cartridge is stamped with the adhesive expiration date. The shelf life, as indicated by the expiration date, corresponds to an unopened pack stored in a dry, dark environment. Storage temperature of the adhesive is  $41^{\circ}$ F to  $86^{\circ}$ F ( $5^{\circ}$ C to  $30^{\circ}$ C). Short-term (less than 48-hour) temperature variations during adhesive storage are permitted as long as the temperature remains between  $41^{\circ}$ F and  $104^{\circ}$ F ( $5^{\circ}$ C and  $40^{\circ}$ C). Under these conditions the shelf life is 36 months for the 13.2 oz, 19.8 oz and 50.7 oz cartridge, and 18 months for the 10.1 oz cartridge.

**3.2.2 Hole Cleaning Equipment and Installation Accessories:** Installation accessories include static mixing nozzles, extension tubes, and injection adapters as depicted in <u>Figure 8</u> of this report.

**3.2.2.1** Standard Hole Cleaning: Hole cleaning equipment comprised of steel wire brushes and air nozzles must be used in accordance with Figure 6 of this report.

**3.2.2.2 Hole Cleaning with Hollow Drill Bit:** When using a hollow drill bit, only the tested hollow drill bits with the manufacturer's designation fischer FHD, Bosch Speed Clean; Hilti TE-CD, TE-YD must be used. The dust extraction system must maintain a minimum volume flow of 36 liters per second (1.27 cubic foot per second). If these requirements are fulfilled, no additional hole cleaning is required.

**3.2.3 Dispensers:** fischer FIS EM Plus adhesive must be dispensed with manual dispensers, cordless electric dispensers or pneumatic dispensers provided by fischerwerke.

### 3.2.4 Steel Anchor Elements:

**3.2.4.1** Threaded steel rods: Threaded steel rods must be clean, continuously threaded rods (all-thread) in diameters as described in Figure 4 of this report. Steel design information for common grades of threaded rod and associated nuts are provided in Table 2 and Table 3 of this report. Carbon steel threaded rods are furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating in accordance with ASTM B633 SC 1, or must be hot-dipped galvanized in accordance with ASTM A153, Class C or D. Steel grade and type (carbon, stainless) for nuts and washers must correspond to the threaded steel rod. Threaded steel rods must be straight and free of indentations or other defects along their length. The end may be stamped with identifying marks and the embedded end may be blunt cut or cut on the bias (chisel point).

**3.2.4.2 fischer Threaded Steel Rods FIS A and RG M:** fischer FIS A and RG M anchor rods are threaded rods classified as ductile steel elements in accordance with Section 3.2.4.5 of this report. The fischer FIS A is a threaded rod with flat shape on both ends. The fischer RG M is a threaded rod with a chamfer shape on the embedded section and flat or hexagonal end on the concrete surface side, as shown in <u>Tables 2</u> and <u>3</u> and <u>Figure 8</u>. Mechanical properties for the fischer FIS A and RG M are provided in <u>Tables 2</u> and <u>3</u> of this report. The anchor rods are available in diameters as shown in <u>Figure 4</u>. fischer FIS A and RG M anchor rods are produced from carbon steel and furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating or fabricated from R or HCR stainless steel. Steel grade and type (carbon, stainless) for the washers and nuts must match the threaded rods. The threaded rods are marked on the head with an identifying mark (see <u>Figure 7</u>).

**3.2.4.3** Steel Reinforcing bars for use in Post-installed Anchor Applications: Steel reinforcing bars are deformed reinforcing bars as described in Table 4 of this report. Figure 4 summarizes reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil and other coatings that impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in ACI 318-19 Section 26.6.3.2 (b) or ACI 318-14 Section 26.6.3.1 (b), as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

**3.2.4.4 fischer internal threaded anchors RG M I:** fischer internal threaded anchors RG M I have a profile on the external surface and are internally threaded. Mechanical properties for fischer internal threaded are provided in <u>Table 5</u>. The anchors are available in diameters and lengths as shown <u>Figure 4</u>. fischer internal threaded anchors RG M I are produced from carbon steel and furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating or fabricated from stainless steel. Specifications for common bolt types that may be used in conjunction with fischer internal threaded anchor RG M I are provided in <u>Table 6</u>. Steel grade and type (carbon, stainless) must match the internal threaded rods. Strength reduction factor, nominal diameter, corresponding to brittle steel elements must be used for fischer internal threaded anchors.

**3.2.4.5 Ductility of Anchor Elements:** In accordance with ACI 318-19 and ACI 318-14 Section 2.3, as applicable, in order for a steel element to be considered ductile, the tested elongation must be at least 14 percent and reduction of area must be at least 30 percent. Steel elements with a tested elongation of less than 14 percent or a reduction of area of less than 30 percent, or both, are considered brittle. Values for various steel materials are provided in <u>Tables 2</u> through 6 of this report. Where values are nonconforming or unstated, the steel must be considered brittle.

**3.2.4.6** Steel Reinforcing bars for use in Post-installed Reinforcing Bar Connections: Steel reinforcing bars used in post-installed reinforcing bar connections are deformed bars (rebars) as depicted in Figure 8. Tables 37 and 38 summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil and other coatings that impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in ACI 318-19 Section 26.6.3.2 (b) or ACI 318-14 Section 26.6.3.1 (b), as applicable, with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

### 3.3 Concrete:

Normal-weight concrete must comply with Sections 1903 and 1905 of the IBC. The specified compressive strength of the concrete must be from 2,500 psi to 8,500 psi(17.2 MPa to 58.6 MPa)

# **4.0 DESIGN AND INSTALLATION**

### 4.1 Strength Design:

**4.1.1 General:** The design strength of adhesive anchors under the 2024 and 2021 IBC, as well as the 2024 and 2021 IRC must be determined in accordance with ACI 318-19 and this report. The design strength of adhesive anchors under the 2018 and 2015 IBC, as well as the 2018 and 2015 IRC, must be determined in accordance with ACI 318-14 and this report.

Design parameters are based on ACI 318-19 for use with the 2024 and 2021 IBC, or ACI 318-14 for use with 2015 IBC, as applicable, unless noted otherwise in Sections 4.1.1 through 4.1.11 of this report. <u>Table 1</u> provides an index to the design strengths.

The strength design of adhesive anchors must comply with ACI 318-19 17.5.1.2 or ACI 318-14 17.3.1, as applicable, except as required in ACI 318-19 17.10 or ACI 318-14 17.2.3, as applicable.

Design parameters are provided in <u>Tables 7</u> through <u>36</u> of this report. Strength reduction factors,  $\phi$ , as described in ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, must be used for load combinations calculated in accordance with Section 1605.1 of the 2024 and 2021 IBC, or Section 1605.2 of the 2018 and 2015 IBC, or ACI 318-19 and ACI 318-14 5.3, as applicable.

**4.1.2** Static Steel Strength in Tension: The nominal steel strength of a single anchor in tension,  $N_{sa}$ , shall be calculated in accordance with ACI 318-19 17.6.1.2 or ACI 318-14 17.4.1.2, as applicable, and the associated strength reduction factors,  $\phi$ , in accordance with ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are given in Tables 7, 12, 17, 22, 27 and 32 of this report for the anchor element types included in this report. See Table 1.

**4.1.3** Static Concrete Breakout Strength in Tension: The nominal static concrete breakout strength in tension of a single anchor of group of anchors,  $N_{cb}$  or  $N_{cbg}$ , must be calculated in accordance with ACI 318-19 17.6.2 or ACI 318-14 17.4.2, as applicable, with the following addition:

The basic concrete breakout strength of a single anchor in tension,  $N_b$ , must be calculated in accordance with ACI 318-19 17.6.2.2 or ACI 318-14 17.4.2.2, as applicable, using the values of  $k_{c,cr}$ , and  $k_{c,uncr}$  as described in the tables of this report. Where analysis indicates no cracking in accordance with ACI 318-19 17.6.2.5 or ACI 318-14 17.4.2.6, as applicable,  $N_b$  must be calculated using  $k_{c,uncr}$  and  $\Psi_{c,N} = 1.0$ . See Table 1. For anchors in lightweight concrete see ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable. The value of  $f'_c$  used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318-19 17.3.1 or ACI 318-14 17.2.7, as applicable. Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

**CC-ES**<sup>\*</sup> Most Widely Accepted and Trusted

**4.1.4 Static Bond Strength in Tension:** The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension,  $N_a$  or  $N_{ag}$ , must be calculated in accordance with ACI 318 17.6.5 or ACI 318-14 17.4.5, as applicable. Bond strength values ( $\tau_{k,uncr} / \tau_{k,cr}$ ) are a function of the concrete state (cracked or uncracked), temperature range, drilling method (hammer drilling / diamond core drilling / hollow drill bit drilling), hole cleaning (standard / hollow drill bit) and the installation conditions (dry / water-saturated / water-filled hole / underwater), and the level of inspection provided (periodic / continuous). The resulting characteristic bond strength must be multiplied by the associated strength reduction factor  $\phi_{nn}$  and the modification factor  $K_{nn}$ , where given, as follows:

|                    |                      |                          |                                           |                                 | DRILLING /<br>CLEANING<br>METHOD | CON-<br>CRETE<br>STATE      | BOND<br>STRENGTH                   | PERMISSIBLE<br>INSTALLATION<br>CONDITIONS                 | ASSOCIATED<br>STRENGTH<br>REDUCTION<br>FACTOR |
|--------------------|----------------------|--------------------------|-------------------------------------------|---------------------------------|----------------------------------|-----------------------------|------------------------------------|-----------------------------------------------------------|-----------------------------------------------|
|                    |                      |                          |                                           |                                 |                                  |                             |                                    | Dry<br>Holes in<br>Concrete                               | $\phi_d \cdot K_d$                            |
| DRILLING /         | CON-                 |                          | PERMISSIBLE                               | ASSOCIATED                      |                                  | uncracked                   | τ.                                 | Water Saturated<br>Holes in<br>Concrete                   | $\phi_{ws} \cdot K_{ws}$                      |
| CLEANING           | CRETE                | BOND<br>STRENGTH         | INSTALLATION<br>CONDITIONS                | STRENGTH<br>REDUCTION<br>FACTOR |                                  | unoracited                  | d $	au_{k,uncr}$                   | Water-filled<br>Holes in<br><u>Concrete</u><br>Underwater | $\phi_{wf} \cdot K_{wf}$                      |
|                    |                      |                          |                                           | Core drilling                   |                                  |                             | Installation<br>in Concrete<br>Dry | $\phi_{uw}$                                               |                                               |
|                    |                      |                          | Concrete<br>Water Saturated<br>Holes in   | φ <sub>ws</sub>                 |                                  | cracked $	au_{k,cr}$        |                                    | Holes in<br>Concrete<br>Water Saturated                   | $\phi_d \cdot K_d$                            |
|                    | uncracked            | $	au_{k,\textit{uncr}}$  | Concrete<br>Water-filled<br>Holes in      | $\phi_{wf} \cdot K_{wf}$        |                                  |                             | $\tau_{k,cr}$                      | Holes in<br>Concrete<br>Water-filled                      | $\phi_{ws} \cdot K_{ws}$                      |
|                    |                      |                          | Concrete<br>Underwater<br>Installation    | φ <sub>uw</sub>                 |                                  |                             |                                    | Holes in<br>Concrete<br>Underwater                        | $\phi_{wf} \cdot K_{wf}$                      |
| Hammer<br>drilling |                      |                          | in Concrete<br>Dry<br>Holes in            | φ <sub>d</sub>                  |                                  |                             |                                    | Installation<br>in Concrete<br>Dry                        | $\phi_{uw}$                                   |
|                    |                      |                          | Concrete<br>Water Saturated               |                                 |                                  | uncracked                   | τ <sub>k,uncr</sub>                | Holes in<br><u>Concrete</u><br>Water Saturated            | φ <sub>d</sub>                                |
|                    | cracked              | $\tau_{k,cr}$            | Holes in<br>Concrete<br>Water-filled      | \$ ws                           | Hollow                           |                             |                                    | Holes in<br>Concrete                                      | $\phi_{ m ws}$                                |
|                    | Holes in<br>Concrete | $\phi_{wf} \cdot K_{wf}$ | drilling                                  | cracked                         | τ <sub>k,cr</sub>                | Dry<br>Holes in<br>Concrete | ¢а                                 |                                                           |                                               |
|                    |                      |                          | Underwater<br>Installation<br>in Concrete | $\phi_{uw}$                     |                                  | oracitou                    | ¢ K,Cr                             | Water Saturated<br>Holes in<br>Concrete                   | $\phi_{ws}$                                   |

Strength reduction factors,  $\phi_{nn}$  and modification factor  $K_{nn}$ , for determination of the bond strength are given in <u>Tables 9</u> through <u>11</u>, <u>14</u> through <u>16</u>, <u>19</u> through <u>21</u>, <u>24</u> through <u>26</u>, <u>29</u> through <u>31</u> and <u>34</u> through <u>36</u> of this report. Bond strength must also be multiplied by the modification factor *K*, where given for the applicable diameters. Adjustments to the bond strength may also be taken for increased concrete compressive strength as noted in the footnotes to the corresponding tables noted above. <u>Figure 5</u> of this report presents a bond strength design selection flowchart.

**4.1.5** Static Steel Strength in Shear: The nominal static strength of a single anchor in shear as governed by the steel,  $V_{sa}$ , in accordance with ACI 318-19 17.7.1.2 or ACI 318-14 17.5.1.2, as applicable, and the strength reduction factor,  $\phi$ , in accordance with ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are given in Tables 7, 12, 17, 22, 27 and 32 for the anchor element types included in this report. See Table 1.

**4.1.6** Static Concrete Breakout Strength in Shear: The nominal static concrete breakout strength of a single anchor or group of anchors in shear,  $V_{cb}$  or  $V_{cbg}$ , must be calculated in accordance with ACI 318-19 17.7.2 or ACI 318-14 17.5.2, as applicable, based on information given in <u>Tables 8</u>, <u>13</u>, <u>18</u>, <u>23</u>, <u>28</u>, and <u>33</u> of this report. See <u>Table 1</u>. The basic concrete breakout strength of a single anchor in shear,  $V_{b}$ , must be calculated in accordance with ACI 318-19 17.7.2.2 or ACI 318-14 17.5.2.2, as applicable, using the values of  $d_a$  given in <u>Tables 7</u>, <u>12</u>, <u>17</u>, <u>22</u>, <u>27</u> and <u>32</u> for the corresponding anchor steel. In addition,  $h_{ef}$  must be substituted for  $\ell_e$ . In no case shall  $\ell_e$  exceed 8*d*. The value of  $f'_c$  shall be limited to a maximum of 8,000 psi (55 MPa) in accordance with ACI 318-19 17.3.1 or ACI 318-14 17.2.7, as applicable.

**4.1.7** Static Concrete Pryout Strength in Shear: The nominal static pryout strength of a single anchor or group of anchors in shear,  $V_{cp}$  or  $V_{cpg}$ , shall be calculated in accordance with ACI 318-19 17.7.3 or ACI 318-14 17.5.3, as applicable.

**4.1.8** Interaction of Tensile and Shear Forces: For designs that include combined tension and shear, the interaction of tension and shear must be calculated in accordance with ACI 318-19 17.8 or ACI 318-14 17.6, as applicable.

**4.1.9 Minimum Member Thickness**, *h<sub>min</sub>*, **Anchor Spacing**, *s<sub>min</sub>*, **and Edge Distance**, *c<sub>min</sub>*: In lieu of ACI 318-19 17.9.2 or ACI 318-14 17.7.1 and 17.7.3, as applicable, values of *s<sub>min</sub>* and *c<sub>min</sub>* described in this report (Tables 8, 13, 18, 23, 28 and 33) must be observed for anchor design and installation. The minimum member thickness, *h<sub>min</sub>*, described in this report (Tables 8, 13, 18, 23, 28 and 33) must be observed for anchor design and 33) must be observed for anchor design and 17.7.4, as applicable.

**4.1.10 Critical Edge Distance**  $c_{ac}$  and  $\psi_{cp,Na}$ : The modification factor  $\psi_{cp,Na}$ , must be determined in accordance with ACI 318-19 17.6.5.5 or ACI 318-14 17.4.5.5, as applicable, except as noted below:

For all cases where  $c_{Na}/c_{ac}<1.0$ ,  $\psi_{cp,Na}$  determined from ACI 318-19 Eq. 17.6.5.5.1b or ACI 318-14 Eq. 17.4.5.5b, as applicable, need not be taken less than  $c_{Na}/c_{ac}$ . For all other cases,  $\psi_{cp,Na}$  shall be taken as 1.0.

The critical edge distance,  $c_{ac}$  must be calculated according to Eq. 17.6.5.5.1c for ACI 318-19 or Eq. 17.4.5.5c for ACI 318-14, in lieu of ACI 318-19 17.9.5 or ACI 318-14 17.7.6, as applicable.

$$c_{ac} = h_{ef} \cdot \left(\frac{T_{k, uncr}}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$

(Eq. 17.6.5.5.1c for ACI 318-19 or Eq. 17.4.5.5c for ACI 318-14)

where

 $\left[\frac{h}{h_{ef}}\right]$  need not be taken as larger than 2.4; and

 $\tau_{k,uncr}$  = the characteristic bond strength stated in the tables of this report whereby  $\tau_{k,uncr}$  need not be taken as larger than:

**4.1.11 Design Strength in Seismic Design Categories C, D, E and F:** In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchors must be designed in accordance with ACI 318-19 17.10 or ACI 318-14 17.2.3, as applicable, except as described below.

The nominal steel shear strength,  $V_{sa}$ , must be adjusted by  $\alpha_{V,seis}$  as given in <u>Tables 7</u>, <u>12</u>, <u>17</u>, <u>22</u>, <u>27</u> and <u>32</u> of this report for the anchor element types included in this report. The nominal bond strength  $\tau_{cr}$  must be adjusted by  $\alpha_{N,seis}$  as noted in <u>Tables 9</u> through <u>11</u>, <u>14</u> through <u>16</u>, <u>19</u> through <u>21</u>, <u>24</u> through <u>26</u>, <u>29</u> through <u>31</u>, and <u>34</u> through <u>36</u> of this report.

### 4.2 Strength Design of Post-Installed Reinforcing Bars:

**4.2.1 General:** The design of straight post-installed deformed reinforcing bars must be determined in accordance with ACI 318 rules for cast-in place reinforcing bar development and splices and this report.

Examples of typical applications for the use of post-installed reinforcing bars are illustrated in <u>Figures 2</u> and 3 of this report.

### 4.2.2 Determination of bar development length I<sub>d</sub>:

Values of  $I_d$  must be determined in accordance with the ACI 318 development and splice length requirements for straight cast-in place reinforcing bars.

### **Exceptions:**

- 1. For uncoated and zinc-coated (galvanized) post-installed reinforcing bars, the factor  $\Psi_e$  shall be taken as 1.0. For all other cases, the requirements in ACI 318-19 25.4.2.5 or ACI 318-14 25.4.2.4 shall apply.
- 2. When using alternate methods to calculate the development length (e.g., anchor theory), the applicable factors for post-installed anchors generally apply.

**4.2.3 Minimum Member Thickness, h**<sub>min</sub>, **Minimum Concrete Cover.**  $c_{c,min}$ , **Minimum Concrete Edge Distance,**  $c_{b,min}$ , **Minimum Spacing,**  $s_{b,min}$ : For post-installed reinforcing bars, there is no limit on the minimum member thickness. In general, all requirements on concrete cover and spacing applicable to straight cast-in bars designed in accordance with ACI 318 shall be maintained.

For post-installed reinforcing bars installed at embedment depths,  $h_{ef}$ , larger than  $20d_b$  ( $h_{ef} > 20d_b$ ), the minimum concrete cover shall be as follows:

| REBAR SIZE                                           | MINIMUM<br>CONCRETE COVER                  |
|------------------------------------------------------|--------------------------------------------|
| d <sub>b</sub>                                       | Cc,min                                     |
| <i>d</i> <sup><i>b</i></sup> ≤ #6 (16 mm)            | 1 <sup>3</sup> / <sub>16</sub> in. (30 mm) |
| $\#6 < d_b \le \#11$<br>(16 mm < $d_b \le 32$<br>mm) | 1 <sup>9/</sup> 16 in.<br>(40 mm)          |

The following requirements apply for minimum concrete edge and spacing for  $h_{ef} > 20d_b$ :

Required minimum edge distance for post-installed reinforcing bars (measured from the center of the bar):

 $c_{b,min} = d_0/2 + c_{c,min}$ 

Required minimum center-to-center spacing between post-installed bars:

 $S_{b,min} = d_0 + c_{c,min}$ 

Required minimum center-to-center spacing from existing (parallel) reinforcing:

 $s_{b,min} = d_b/2$  (existing reinforcing) +  $d_0/2 + c_{c,min}$ 

All other requirements applicable to straight cast-in place bars designed in accordance with ACI 318 shall be maintained.

**4.2.4** Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Category C, D, E or F under the IBC or IRC, design of straight post-installed reinforcing bars must take into account the provisions of ACI 318-19 or ACI 318-14 Chapter 18, as applicable.

## 4.3 Installation:

Installation parameters are illustrated in Figures 1, 2 and 4 of this report. Installation must be in accordance with ACI 318-19 26.7.2 or ACI 318-14 17.8.1 and 17.8.2, as applicable. Adhesive anchor locations must comply with this report and the plans and specifications approved by the code official. Installation of the fischer FIS EM Plus Adhesive Anchor System must conform to the manufacturer's printed installation instructions (MPII) included in each unit package as described in Figure 6 of this report.

The adhesive anchor system may be used for upwardly inclined orientation applications (e.g. overhead). Upwardly inclined, horizontal, and drill depths deeper than 10 inches (250 mm) and drill hole diameters larger than  $1^{1/2}$  inches (40 mm) are to be installed using injection adaptors in accordance with the MPII as shown in Figure 6 of this report. The injection adaptor corresponding to the hole diameter must be attached to the extension tubing and static mixer supplied by fischer.

## 4.4 Special Inspection:

**4.4.1 General:** Installations may be made under continuous special inspection or periodic special inspection, as determined by the registered design professional. <u>Tables 9</u> through <u>11</u>, <u>14</u> through <u>16</u>, <u>19</u> through <u>21</u>, <u>24</u> through <u>26</u>, <u>29</u> through <u>31</u>, and <u>34</u> through <u>36</u> of this report provide strength reduction factors,  $\phi_{nn}$ , and strength modification factors,  $\phi_{nn}$ , corresponding to the type of inspection provided.

Continuous special inspection of adhesive anchors installed in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed in accordance with ACI 318-19 26.13.3.2(e) or ACI 318-14 17.8.2.4, 26.7.1(h) and 26.13.3.2(c), as applicable.

Under the IBC, additional requirements as set forth in Section 1705.1.1 and Table 1705.3 of the 2024, 2021, 2018, or 2015 IBC must be observed, where applicable.

**4.4.2 Continuous Special Inspection:** Installations made under continuous special inspection with an onsite proof loading program must be performed in accordance with Section 1705.1.1 and Table 1705.3 of the 2024, 2021, 2018, or 2015 IBC, whereby continuous special inspection is defined in Section 1702.1 of the IBC, and this report. The special inspector must be on the jobsite continuously during anchor installation to verify anchor type, adhesive expiration date, anchor dimensions, concrete type, concrete compressive strength, hole dimensions, hole cleaning procedures, anchor spacing, edge distances, concrete thickness, anchor embedment, tightening torque, and adherence to the manufacturer's printed installation instructions.

The proof loading program must be established by the registered design professional. As a minimum, the following requirements must be addressed in the proof loading program:

- 1. Frequency of proof loading based on anchor type, diameter, and embedment.
- 2. Proof loads by anchor type, diameter, embedment, and location.

3. Acceptable displacements at proof load.

4. Remedial action in the event of a failure to achieve proof load, or excessive displacement.

Unless otherwise directed by the registered design professional, proof loads must be applied as confined tension tests. Proof load levels must not exceed the lesser of 67 percent of the load corresponding to the nominal bond strength as calculated from the characteristic bond stress for uncracked concrete modified for edge effects and concrete properties, or 80 percent of the minimum specified anchor element yield strength ( $A_{se,N} \cdot f_{ya}$ ). The proof load must be maintained at the required load level for a minimum of 10 seconds.

**4.4.3 Periodic Special Inspection:** Periodic special inspection must be performed where required in accordance with Sections 1705.1.1 and Table 1705.3 of the 2024, 2021, 2018, or 2015 IBC and this report. The special inspector must be on the jobsite initially during anchor installation to verify anchor type, anchor dimensions, concrete type, concrete compressive strength, adhesive identification and expiration date, hole dimensions, hole cleaning procedures, anchor spacing, edge distances, concrete thickness, anchor embedment, tightening torque and adherence to the manufacturer's published installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor by construction personnel on site. Subsequent installations of the same anchor type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor product being installed or the personnel performing the installation requires an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

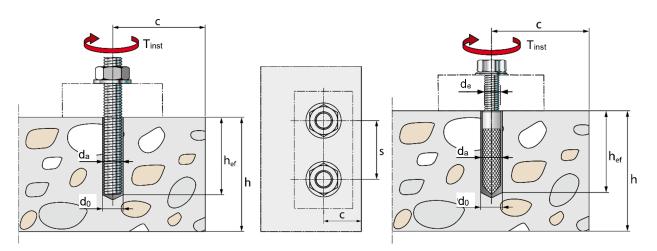
# 5.0 CONDITIONS OF USE:

The fischer FIS EM Plus Adhesive Anchor System and Post-Installed Reinforcing Bar System described in this report is a suitable alternative to what is specified in the codes listed in Section 1.0 of this report, subject to the following conditions:

- **5.1** fischer FIS EM Plus adhesive anchors and post-installed reinforcing bars must be installed in accordance with this report and the manufacturer's printed installation instructions included in the adhesive packaging and described in Figure 6 of this report.
- **5.2** The anchors and post-installed reinforcing bars must be installed in cracked or uncracked normal-weight concrete having a specified compressive strength  $f'_c = 2,500$  psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].
- **5.3** The values of  $f'_c$  used for calculation purposes must not exceed 8,000 psi (55 MPa).
- **5.4** Anchors and post-installed reinforcing bars must be installed in concrete base materials in holes predrilled in accordance with the instructions provided in <u>Figure 6</u> of this report.
- **5.5** Loads applied to the anchors must be adjusted in accordance with Section 1605.1 of the 2024 or 2021 IBC, or Section 1605.2 of the 2018 or 2015 IBC for strength design.
- **5.6** fischer FIS EM Plus adhesive anchors are recognized for use to resist short- and long-term loads, including wind and earthquake loads, subject to the conditions of this report.
- **5.7** In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report.
- **5.8** fischer FIS EM Plus adhesive anchors and post-installed reinforcing bars are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchor, subject to the conditions of this report.
- 5.9 Strength design values are established in accordance with Section 4.1 of this report.
- **5.10** Post-installed reinforcing bar development and splice length is established in accordance with Section 4.2 of this report.
- **5.11** Minimum anchor spacing and edge distance, as well as minimum member thickness, must comply with the values given in this report.
- **5.12** Post-installed reinforcing bar spacing, minimum member thickness, and cover distance must be in accordance with the provisions of ACI 318 for cast-in place bars and section 4.2.3 of this report.
- **5.13** Prior to installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.

include but are not limited to anchorage of building facade systems and other applications subject to direct sun exposure.

**5.23**fischer FIS EM Plus adhesive is manufactured by fischerwerke GmbH & Co. KG, Denzlingen, Germany, under a quality-control program with inspections by ICC-ES.


# **6.0 EVIDENCE SUBMITTED**

Data in accordance with the ICC-ES Acceptance Criteria for Post-Installed Adhesive Anchors and Reinforcing Bars in Concrete Elements AC308 (24), published April 2025.

# 7.0 IDENTIFICATION

- **7.1** The ICC-ES mark of conformity, electronic labeling, or the evaluation report number (ICC-ES ESR-1990) along with the name, registered trademark, or registered logo of the report holder must be included in the product label.
- **7.2** In addition, fischer FIS EM Plus adhesive is identified by packaging labeled with the manufacturer's name (fischerwerke) and address, product name, lot number and expiration date.
- **7.3** fischer internal threaded anchors RG M I are identified by packaging labeled with the manufacturer's name (fischerwerke) and address, product name, and size. fischer threaded rods FIS A and RG M are identified by packaging labeled with the manufacturer's name (fischerwerke) and address, product name, and size. Threaded rods, nuts, washers and deformed reinforcing bars are standard elements and must conform to applicable national or international specifications as set forth in Tables 2, 3, and 4 of this report.
- 7.4 The report holder's contact information is the following:

fischerwerke GmbH & Co. KG KLAUS-FISCHER-STRASSE 1 72178 WALDACHTAL GERMANY +49 7443 120 www.fischer-international.com



THREADED ROD / REINFORCING BAR

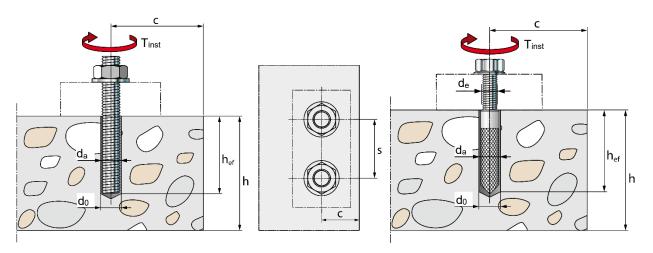

fischer INTERNAL THREADED ANCHOR

FIGURE 1—GENERAL INSTALLATION PARAMETERS FOR THREADED RODS, REINFORCING BARS AND INTERNAL THREADED ANCHORS ICC-ES<sup>®</sup> Most Widely Accepted and Trusted

by packaging labeled with the manufacturer's name (fischerwerke) and address, product name, and size. Threaded rods, nuts, washers and deformed reinforcing bars are standard elements and must conform to applicable national or international specifications as set forth in <u>Tables 2</u>, <u>3</u>, and <u>4</u> of this report.

7.4 The report holder's contact information is the following:

fischerwerke GmbH & Co. KG KLAUS-FISCHER-STRASSE 1 72178 WALDACHTAL GERMANY +49 7443 120 www.fischer-international.com



THREADED ROD / REINFORCING BAR

fischer INTERNAL THREADED ANCHOR

FIGURE 1—GENERAL INSTALLATION PARAMETERS FOR THREADED RODS, REINFORCING BARS AND INTERNAL THREADED ANCHORS

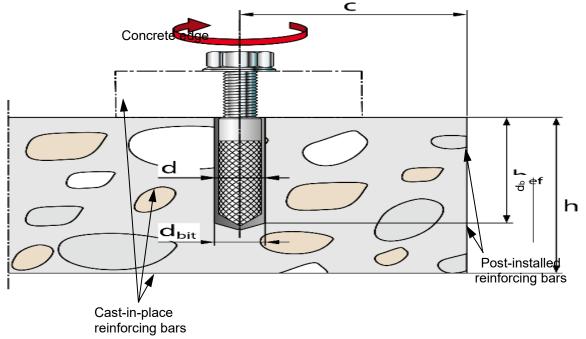
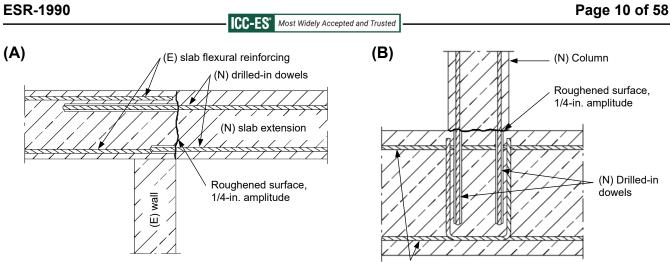
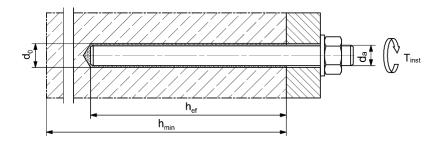





FIGURE 2—GENERAL INSTALLATION PARAMETERS FOR POST-INSTALLED REINFORCING BARS

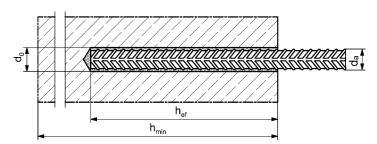


(E) Foundation reinforcing

FIGURE 3—(A) OVERLAP JOINT WITH EXISTING REINFORCEMENT FOR REBAR CONNECTIONS (B) OVERLAP JOINT WITH EXISTING REINFORCEMENT AT A FOUNDATION OF A COLUMN OR WALL



#### METRIC THREADED RODS

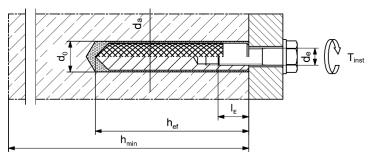

| Ø d <sub>a</sub> [mm] | Ø d₀ [mm] | h <sub>ef,min</sub> [mm] | h <sub>ef,max</sub> [mm] | h <sub>min</sub> [mm] | T <sub>inst</sub> [Nm] |
|-----------------------|-----------|--------------------------|--------------------------|-----------------------|------------------------|
| M8                    | 10        | 60                       | 160                      | 100                   | 10                     |
| M10                   | 12        | 60                       | 200                      | 100                   | 20                     |
| M12                   | 14        | 70                       | 240                      | 100                   | 40                     |
| M16                   | 18        | 80                       | 320                      | 116                   | 60                     |
| M20                   | 24        | 90                       | 400                      | 138                   | 120                    |
| M24                   | 28        | 96                       | 480                      | 152                   | 150                    |
| M27                   | 30        | 108                      | 540                      | 162                   | 200                    |
| M30                   | 35        | 120                      | 600                      | 190                   | 300                    |

#### FRACTIONAL THREADED RODS

| Ø d <sub>a</sub> [inch]       | Ø d₀ [inch]                   | h <sub>ef,min</sub> [inch]    | h <sub>ef,max</sub> [inch]     | h <sub>min</sub> [inch]       | T <sub>inst</sub> [ft ⋅ lb] |
|-------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|-----------------------------|
| <sup>3</sup> / <sub>8</sub>   | <sup>7</sup> / <sub>16</sub>  | 2 <sup>3</sup> / <sub>8</sub> | 7 <sup>1</sup> / <sub>2</sub>  | 3 <sup>5</sup> / <sub>8</sub> | 15                          |
| 1/2                           | <sup>9</sup> / <sub>16</sub>  | 2 <sup>3</sup> / <sub>4</sub> | 10                             | 3 <sup>5</sup> / <sub>8</sub> | 30                          |
| <sup>5</sup> / <sub>8</sub>   | <sup>3</sup> / <sub>4</sub>   | 3 <sup>1</sup> / <sub>8</sub> | 12 <sup>1</sup> / <sub>2</sub> | 4 <sup>5</sup> / <sub>8</sub> | 50                          |
| 3/4                           | 7/8                           | 3 <sup>1</sup> / <sub>2</sub> | 15                             | 5 <sup>1</sup> / <sub>4</sub> | 90                          |
| 7/ <sub>8</sub>               | 1                             | 3 <sup>1</sup> / <sub>2</sub> | 17 <sup>1</sup> / <sub>2</sub> | 5 <sup>1</sup> / <sub>2</sub> | 100                         |
| 1                             | 1 <sup>1</sup> / <sub>8</sub> | 4                             | 20                             | 6 <sup>1</sup> / <sub>4</sub> | 135                         |
| 1 <sup>1</sup> / <sub>8</sub> | 1 <sup>1</sup> / <sub>4</sub> | 4 <sup>1</sup> / <sub>2</sub> | 22 <sup>1</sup> / <sub>2</sub> | 7                             | 180                         |
| 1 <sup>1</sup> / <sub>4</sub> | 1 <sup>3</sup> / <sub>8</sub> | 5                             | 25                             | 7 <sup>3</sup> / <sub>4</sub> | 240                         |

FIGURE 4—INSTALLATION PARAMETERS

ICC-ES<sup>®</sup> Most Widely Accepted and Trusted




## COMMON STEEL REINFORCING BARS

| Ø d <sub>a</sub> [mm] | Ø d₀ [mm] | h <sub>ef,min</sub> [mm] | h <sub>ef,max</sub> [mm] | h <sub>min</sub> [mm] | T <sub>inst</sub> [Nm] |
|-----------------------|-----------|--------------------------|--------------------------|-----------------------|------------------------|
| 10                    | 14        | 60                       | 200                      | 100                   | 30                     |
| 12                    | 16        | 70                       | 240                      | 102                   | 50                     |
| 16                    | 20        | 80                       | 320                      | 116                   | 110                    |
| 20                    | 25        | 90                       | 400                      | 130                   | 190                    |
| 25                    | 30        | 100                      | 500                      | 150                   | 280                    |
| 28                    | 35        | 112                      | 560                      | 168                   | 350                    |
| 32                    | 40        | 128                      | 640                      | 192                   | 430                    |

#### FRACTIONAL REINFORCING BARS

| Ø d <sub>a</sub> [inch] | Ø d₀ [inch]                   | h <sub>ef,min</sub> [inch]    | h <sub>ef,max</sub> [inch]     | h <sub>min</sub> [inch]       | T <sub>inst</sub> [ft ⋅ lb] |
|-------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|-----------------------------|
| #3                      | <sup>1</sup> / <sub>2</sub>   | 2 <sup>3</sup> / <sub>8</sub> | 7 <sup>1</sup> / <sub>2</sub>  | 3 ⁵/ <sub>8</sub>             | 22                          |
| #4                      | <sup>5</sup> / <sub>8</sub>   | 2 <sup>3</sup> / <sub>4</sub> | 10                             | 4                             | 44                          |
| #5                      | <sup>13</sup> / <sub>16</sub> | 3 <sup>1</sup> / <sub>8</sub> | 12 <sup>1</sup> / <sub>2</sub> | 4 <sup>1</sup> / <sub>8</sub> | 81                          |
| #6                      | <sup>7</sup> /8               | 3 <sup>1</sup> / <sub>2</sub> | 15                             | 5 <sup>1</sup> /4             | 129                         |
| #7                      | 1 <sup>1</sup> / <sub>8</sub> | 3 <sup>1</sup> / <sub>2</sub> | 17 <sup>1</sup> / <sub>2</sub> | 5 <sup>3</sup> /4             | 177                         |
| #8                      | 1 <sup>1</sup> / <sub>4</sub> | 4                             | 20                             | 6 <sup>1</sup> / <sub>2</sub> | 236                         |
| #9                      | 1.128                         | 4 <sup>1</sup> / <sub>2</sub> | 22 <sup>1</sup> / <sub>2</sub> | 7 <sup>1</sup> / <sub>4</sub> | 280                         |
| #10                     | 1.270                         | 5                             | 25                             | 8                             | 332                         |
| #11                     | 1.410                         | 5 <sup>1</sup> / <sub>2</sub> | 27 <sup>1</sup> / <sub>2</sub> | 9                             | 332                         |



#### METRIC fischer INTERNAL THREADED ANCHOR

| Ø d <sub>e</sub> [mm] | Ø d₀ [mm] | Ø d <sub>a</sub> [mm] | h <sub>ef</sub> [mm] | h <sub>min</sub> [mm] | T <sub>inst</sub> [Nm] |
|-----------------------|-----------|-----------------------|----------------------|-----------------------|------------------------|
| M8                    | 14        | 12                    | 90                   | 120                   | 10                     |
| M10                   | 18        | 16                    | 90                   | 125                   | 20                     |
| M12                   | 20        | 18                    | 125                  | 165                   | 40                     |
| M16                   | 24        | 22                    | 160                  | 205                   | 80                     |
| M20                   | 32        | 28                    | 200                  | 260                   | 120                    |

## FRACTIONAL fischer INTERNAL THREADED ANCHOR

| Ø d <sub>e</sub> [inch]     | Ø d₀ [inch]                   | Ø d <sub>a</sub> [inch]       | h <sub>ef</sub> [inch] | h <sub>min</sub> [inch] | T <sub>inst</sub> [ft ⋅ lb] |
|-----------------------------|-------------------------------|-------------------------------|------------------------|-------------------------|-----------------------------|
| <sup>3</sup> / <sub>8</sub> | <sup>3</sup> / <sub>4</sub>   | <sup>5</sup> /8               | 3.54                   | 4.92                    | 15                          |
| 1/2                         | <sup>13</sup> / <sub>16</sub> | <sup>11</sup> / <sub>16</sub> | 4.92                   | 6.50                    | 30                          |
| <sup>5</sup> / <sub>8</sub> | 1                             | 7/ <sub>8</sub>               | 6.30                   | 8.07                    | 59                          |
| 3/4                         | 1 <sup>1</sup> / <sub>4</sub> | 1 <sup>1</sup> / <sub>8</sub> | 7.87                   | 10.24                   | 89                          |

#### FIGURE 4—INSTALLATION PARAMETERS (CONTINUED)

ICC-ES<sup>®</sup> Most Widely Accepted and Trusted

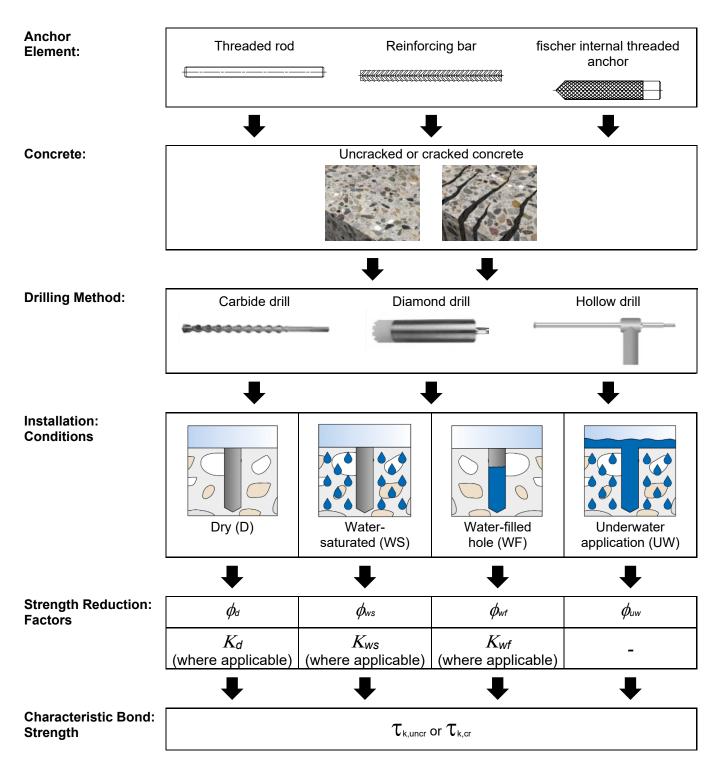



FIGURE 5—FLOWCHART FOR THE DETERMINATION OF THE DESIGN BOND STRENGTH

#### TABLE 1—DESIGN TABLE INDEX

| Design strength <sup>1</sup> |                                   | Thread                      | Threaded rod                 |                              | Deformed reinforcement       |                              | Internal threaded anchor     |  |
|------------------------------|-----------------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--|
|                              |                                   | Metric                      | Fractional                   | Metric                       | Fractional                   | Metric                       | Fractional                   |  |
| Steel                        | N <sub>sa</sub> , V <sub>sa</sub> | Table 7                     | Table 22                     | Table 12                     | Table 27                     | Table 17                     | Table 32                     |  |
| Concrete                     | Ncb, Ncbg, Vcb, Vcbg, Vcp, Vcpg   | Table 8                     | Table 23                     | Table 13                     | Table 28                     | Table 18                     | Table 33                     |  |
| Bond <sup>2</sup>            | Na, Nag                           | <u>Table 9</u> to <u>11</u> | <u>Table 24</u> to <u>26</u> | <u>Table 14</u> to <u>16</u> | <u>Table 29</u> to <u>31</u> | <u>Table 19</u> to <u>21</u> | <u>Table 34</u> to <u>36</u> |  |
| Bond reduction<br>factors    | Ød, Øws, Øwf, Øuw, Kd, Kws, Kwf   | <u>Table 9</u> to <u>11</u> | <u>Table 24</u> to <u>26</u> | <u>Table 14</u> to <u>16</u> | <u>Table 29</u> to <u>31</u> | <u>Table 19</u> to <u>21</u> | <u>Table 34</u> to <u>36</u> |  |

<sup>1</sup>Design strengths are as set forth in ACI 318-19 17.5.1.2 or ACI 318-14 17.3.1.1, as applicable.

<sup>2</sup>See Section 4.1 of this report for bond strength information.

# TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON STEEL THREADED ROD MATERIALS AND FISCHER THREADED RODS FIS A AND RG M<sup>1</sup>

| THREADED ROD SPECIFICATI                                                              | ON           |                                                                     | Minimum                                                |                                   |                                               |                                            |                                                           |
|---------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------------------|
|                                                                                       |              | Minimum<br>specified<br>ultimate<br>strength<br>(f <sub>uta</sub> ) | yield<br>strength<br>0.2% offset<br>(f <sub>ya</sub> ) | f <sub>uta</sub> /f <sub>ya</sub> | Elongation,<br>min.<br>(percent) <sup>7</sup> | Reduction<br>of Area,<br>min.<br>(percent) | Specification<br>for nuts <sup>9</sup>                    |
| ASTM F568M <sup>3</sup> Class 5.8<br>(equivalent to ISO 898-1 <sup>2</sup> Class 5.8) | MPa<br>(psi) | 500<br>(72,519)                                                     | 400<br>(58,015)                                        | 1.25                              | 10 <sup>8</sup>                               | 35                                         | DIN 934 Grade 6<br>(8-A2K) (Metric)<br>ASTM A563 Grade DH |
| ISO 898-1 <sup>2</sup> Class 8.8                                                      | MPa<br>(psi) | 800<br>(116,030)                                                    | 640<br>(92,824)                                        | 1.25                              | 12 <sup>8</sup>                               | 52                                         | DIN 934 Grade 8<br>(8-A2K)                                |
| ASTM A36 <sup>4</sup> and F1554 <sup>5</sup> Grade 36                                 | MPa<br>(psi) | 400<br>(58,000)                                                     | 248<br>(36,000)                                        | 1.61                              | 23                                            | 40                                         | ASTM A194 / A563                                          |
| ASTM F1554⁵ Grade 55                                                                  | MPa<br>(psi) | 517<br>(75,000)                                                     | 380<br>(55,000)                                        | 1.36                              | 23                                            | 40                                         | Grade A                                                   |
| ASTM A193 <sup>6</sup> Grade B7 $\leq 2^{1}/_{2}$ in.<br>( $\leq$ 64mm)               | MPa<br>(psi) | 862<br>(125,000)                                                    | 724<br>(105,000)                                       | 1.19                              | 16                                            | 50                                         | ASTM A194 / A563                                          |
| ASTM F1554 <sup>5</sup> Grade 105                                                     | MPa<br>(psi) | 862<br>(125,000)                                                    | 724<br>(105,000)                                       | 1.19                              | 15                                            | 45                                         | Grade DH                                                  |

<sup>1</sup>fischer FIS EM Plus must be used with continuously threaded carbon steel rod (all-thread) that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series.

<sup>2</sup>Mechanical properties of fasteners made of carbon steel and alloy steel – Part 1: Bolts, screws and studs.

<sup>3</sup>Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners.

<sup>4</sup>Standard Specification for Carbon Structural Steel.

<sup>5</sup>Standard Specification for Anchor Bolts, Steel, 36, 55 and 105ksi Yield Strength.

<sup>6</sup>Standard Specification for Alloy Steel and Stainless Steel Bolting Materials for High Temperature Service.

<sup>7</sup>Based on 2-in. (50 mm) gauge length except ISO 898, which is based on 5d.

<sup>8</sup>≥14 % for fischer FIS A and RG M.

<sup>9</sup>Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal or greater than the minimum tensile strength of the specific threaded rods.

#### 3 TABLE —SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STAINLESS STEEL THREADED ROD MATERIALS AND FISCHER THREADED RODS FIS A AND RG M<sup>1</sup>

| THREADED ROD SPECIFICAT                                                                              | ION          |                                                                  |                                                                          |                                    |                                  |                                         |                                        |
|------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------|----------------------------------|-----------------------------------------|----------------------------------------|
|                                                                                                      |              | Minimum<br>specified<br>ultimate<br>strength (f <sub>uta</sub> ) | Minimum<br>specified yield<br>strength 0.2%<br>offset (f <sub>ya</sub> ) | f <sub>uta</sub> l f <sub>ya</sub> | Elongation,<br>min.<br>(percent) | Reduction of<br>Area, min.<br>(percent) | Specification<br>for nuts <sup>6</sup> |
| ISO 3056-1 <sup>2</sup> A4-80 and<br>fischer FIS A / RGM<br>Type R and HCR Grade 80<br>M8-M30        | MPa<br>(psi) | 800<br>(116,000)                                                 | 600<br>(87,000)                                                          | 1.34                               | 12 <sup>6</sup>                  | _7                                      | ISO 4032                               |
| ISO 3506-1 <sup>2</sup> A4-70 and fischer FIS<br>A / RGM<br>Type R and HCR Grade 70<br>M8-M30        | MPa<br>(psi) | 700 (101,500)                                                    | 450 (65,250)                                                             | 1.56                               | 16                               | _7                                      | ISO 4032                               |
| ASTM F593 <sup>3</sup> CW1 (316)<br><sup>1</sup> / <sub>4</sub> to <sup>5</sup> / <sub>8</sub> in.   | MPa<br>(psi) | 689<br>(100,000)                                                 | 448<br>(65,000)                                                          | 1.54                               | 20                               | -                                       | ASTM F594                              |
| ASTM F593 <sup>3</sup> CW2 (316)<br><sup>3</sup> / <sub>4</sub> to 1 <sup>1</sup> / <sub>2</sub> in. | MPa<br>(psi) | 586<br>(85,000)                                                  | 310<br>(45,000)                                                          | 1.89                               | 25                               | -                                       | Alloy group 1,<br>2, 3                 |
| ASTM A193 <sup>4</sup> Grad B8/B8M,<br>Class 1                                                       | MPa<br>(psi) | 517<br>(75,000)                                                  | 207<br>(30,000)                                                          | 2.50                               | 30                               | 50                                      | ASTM F594                              |
| ASTM A193 <sup>4</sup> Grad B8/B8M,<br>Class 2B                                                      | MPa<br>(psi) | 655<br>(95,000)                                                  | 517<br>(75,000)                                                          | 1.27                               | 25                               | 40                                      | Alloy Group 1,<br>2 or 3               |

<sup>1</sup>fischer FIS EM Plus may be used with continuously threaded stainless steel rod (all-thread) with thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series.

<sup>2</sup>Mechanical properties of corrosion resistant stainless steel fasteners – Part 1: Bolts, screws and studs

<sup>3</sup>Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws and Studs.

<sup>4</sup>Standard Specification for Alloy Steel and Stainless Steel Bolting Materials for High Temperature Service.

<sup>5</sup>Based on 2-in. (50 mm) gauge length except ISO 898, which is based on 5d.

<sup>6</sup>≥14 % for fischer FIS A and RG M.

 $^{7}\geq$ 30 % for fischer FIS A and RG M.

<sup>8</sup>Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal or greater than the minimum tensile strength of the specific threaded rods. Material types of the nuts and washers must be matched to the threaded rods.

|                                                        | ON    | Minimum specified ultimate strength<br>(f <sub>uta</sub> ) | Minimum specified yield strength<br>(f <sub>ya</sub> ) |
|--------------------------------------------------------|-------|------------------------------------------------------------|--------------------------------------------------------|
|                                                        | MPa   | 540                                                        | 500                                                    |
| DIN 488 B500B <sup>1</sup>                             | (psi) | (78,300)                                                   | (72,500)                                               |
| ASTM A615 <sup>2</sup> , ASTM A767 <sup>3</sup> Gr. 40 | MPa   | 414                                                        | 276                                                    |
| ASTM A015-, ASTM A707- GI. 40                          | (psi) | (60,000)                                                   | (40,000)                                               |
| ASTM A615 <sup>2</sup> , ASTM A767 <sup>3</sup> Gr. 60 | MPa   | 552                                                        | 414                                                    |
| ASTM A015", ASTM A707" GI. 60                          | (psi) | (80,000)                                                   | (60,000)                                               |
| ASTM A706 <sup>4</sup> , ASTM A767 <sup>3</sup> Gr. 60 | MPa   | 552                                                        | 414                                                    |
| ASTIM ATUO , ASTIM ATUT GI. 00                         | (psi) | (80,000)                                                   | (60,000)                                               |

<sup>1</sup>Reinforcing steel; reinforcing steel bars; dimensions and masses.

<sup>2</sup>Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement.

<sup>3</sup>Standard Specification for Zinc-Coated (Galvanized) Steel Bars for Concrete Reinforcement.

<sup>4</sup>Billet Steel Bars for Concrete Reinforcement.

#### TABLE 5—SPECIFICATIONS AND PHYSICAL PROPERTIES OF FISCHER INTERNAL THREADED ANCHOR RG M I

| fischer INTERNAL THREADED AI<br>RG M I SPECIFICATION | NCHOR | Minimum specified ultimate<br>strength (f <sub>uta</sub> ) | Minimum specified yield<br>strength (f <sub>ya</sub> ) | f <sub>uta</sub> lf <sub>ya</sub> |
|------------------------------------------------------|-------|------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|
| ASTM F568M <sup>1</sup> Grade 5.8 <sup>3</sup>       | MPa   | 525                                                        | 420                                                    | 1.25                              |
| (equivalent to<br>ISO 898-1 <sup>2</sup> Grade 5.8)  | (psi) | (76,150)                                                   | (60,900)                                               | 1.25                              |
| ISO 3506-1 A4-704 M                                  |       | 700                                                        | 450                                                    | 1 56                              |
| (fischer RG M I Type R and HCR)                      | (psi) | (101,550)                                                  | (65,250)                                               | 1.56                              |

<sup>1</sup>Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners.

<sup>2</sup>Mechanical properties of fasteners made of carbon steel and alloy steel – Part 1: Bolts, screws and studs.

<sup>3</sup>Minimum Grade 5 bolts, cap screws or studs must be used with carbon steel RG M I internal threaded anchor.

<sup>4</sup>Only stainless steel bolts, cap screws or studs must be used with RG M I Type R and HCR.

# TABLE 6—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON BOLTS, CAP SCREWS AND STUDS FOR USE WITH FISCHER INTERNAL THREADED ANCHOR RG M I

| BOLT CAP SCREW OR SPECIFICATION                     | STUD         | Minimum<br>specified<br>ultimate<br>strength (f <sub>uta</sub> ) | Minimum<br>specified yield<br>strength (f <sub>ya</sub> ) | f <sub>uta</sub> /f <sub>ya</sub> | Elongation,<br>min.<br>(percent) | Reduction<br>of Area, min.<br>(percent) | Specifications for Nuts <sup>3</sup> |
|-----------------------------------------------------|--------------|------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|
| ASTM F568M <sup>1</sup> Grade 5.8<br>(equivalent to | MPa<br>(psi) | (500)<br>72,500                                                  | (400)<br>58.000                                           | 1.25                              | 14                               | 30                                      | EN ISO 898-2 Grade 5                 |
| ISO 898-1 <sup>2</sup> Grade 5.8)                   | (psi)        | 72,300                                                           | 30,000                                                    |                                   |                                  |                                         |                                      |
| ISO 898-1 Grade 8.8                                 | MPa          | (800)                                                            | (640)                                                     | 1.25                              | 14                               | 30                                      | EN ISO 898-2 Grade 8                 |
|                                                     | (psi)        | 116,000                                                          | 92,800                                                    | 1.20                              |                                  |                                         |                                      |
| ISO 3506-1 Grade A4-70                              | MPa          | (700)                                                            | (450)                                                     | 1.56                              | 14                               | 30                                      | EN ISO 3506-2                        |
| 150 5506-1 Grade A4-70                              | (psi)        | 101,550                                                          | 65,250                                                    | 1.50                              | 14                               | 30                                      | Grade A4-70 <sup>4</sup>             |

<sup>1</sup>Standard Specification for Carbon and Alloy Steel Externally Threaded Metric Fasteners.

<sup>2</sup>Mechanical properties of fasteners made of carbon steel and alloy steel – Part 1: Bolts, screws and studs.

<sup>3</sup>Nuts must have specified minimum proof load stress equal to or greater than the specified minimum full-size tensile strength of the specified stud

<sup>4</sup>Nuts for Stainless steel studs must be of the same Alloy group as the specified bolt, cap screw or stud

|                                             | DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |        |                                       |          |          | NAL ROD           |          |          |          |           |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|---------------------------------------|----------|----------|-------------------|----------|----------|----------|-----------|
|                                             | INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SYMBOL            | UNITS  | M8                                    | M10      | M12      | M16               | M20      | M24      | M27      | M30       |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | mm     | 8                                     | 10       | 12       | 16                | 20       | 24       | 27       | 30        |
| R                                           | od Outside Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | da                | (in.)  | (0.31)                                | (0.39)   | (0.47)   | (0.63)            | (0.79)   | (0.94)   | (1.06)   | (1.18)    |
| Dedoff                                      | anticus anno an ational anno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                 | mm²    | 36.6                                  | 58.0     | 84.3     | 156.7             | 244.8    | 352.5    | 459.4    | 560.7     |
| Rod ene                                     | ective cross-sectional area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ase               | (in.²) | (0.057)                               | (0.090)  | (0.131)  | (0.243)           | (0.379)  | (0.546)  | (0.712)  | (0.869)   |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N <sub>sa</sub>   | kN     | 18.3                                  | 29.0     | 42.2     | 78.4              | 122.4    | 176.3    | 229.7    | 280.4     |
|                                             | Nominal strength<br>as governed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | / v <sub>sa</sub> | (lb)   | (4,115)                               | (6,520)  | (9,475)  | (17,615)          | (27,515) | (39,625) | (51,640) | (63,025)  |
| <del></del> ∞.                              | by steel strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vsa               | kN     | 11.0                                  | 17.4     | 25.3     | 47.0              | 73.4     | 105.8    | 137.8    | 168.2     |
| 898-<br>Je 5.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V Sa              | (lb)   | (2,470)                               | (3,910)  | (5,685)  | (10,570)          | (16,510) | (23,775) | (30,985) | (37,815)  |
| ISO 898-1<br>Grade 5.8                      | Reduction for seismic<br>shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $lpha_{V,seis}$   | -      |                                       |          | 1.0      |                   |          |          | 0.87     |           |
|                                             | Strength reduction factor $\phi$ for tension <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\phi$            | -      |                                       |          |          | 0.65 <sup>3</sup> | / 0.754  |          |          |           |
|                                             | Strength reduction factor $\phi$ for shear <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | φ                 | -      |                                       |          |          | 0.60 <sup>3</sup> | / 0.654  |          |          |           |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | kN     | 29.3                                  | 46.4     | 67.4     | 125.4             | 195.8    | 282.0    | 367.5    | 448.6     |
|                                             | Nominal strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N <sub>sa</sub>   | (lb)   | (6,580)                               | (10,430) | (15,160) | (28,180)          | (44,025) | (63,395) | (82,620) | (100,840) |
| <i>−</i> ∞                                  | as governed<br>by steel strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vsa               | kN     | 17.6                                  | 27.8     | 40.5     | 75.2              | 117.5    | 169.2    | 220.5    | 269.1     |
| 898-<br>de 8.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V sa              | (lb)   | (3,950)                               | (6,260)  | (9,095)  | (16,910)          | (26,415) | (38,040) | (49,575) | (60,505)  |
| Grac                                        | v     over strength       by steel strength |                   | -      | 0.90                                  |          |          |                   |          |          |          |           |
|                                             | Strength reduction factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\phi$            | -      | 0.65 <sup>3</sup> / 0.75 <sup>4</sup> |          |          |                   |          |          |          |           |
|                                             | Strength reduction factor $\phi$ for shear <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | φ                 |        | 0.60 <sup>3</sup> / 0.65 <sup>4</sup> |          |          |                   |          |          |          |           |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Nsa               | kN     | 25.6                                  | 40.6     | 59.0     | 109.7             | 171.4    | 246.8    | 321.6    | 392.5     |
| 20                                          | Nominal strength<br>as governed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IVsa              | (lb)   | (5,760)                               | (9,125)  | (13,265) | (24,660)          | (38,525) | (55,470) | (72,295) | (88,235)  |
| - ° 5<br>5<br>8                             | by steel strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vsa               | kN     | 15.4                                  | 24.4     | 35.4     | 65.8              | 102.8    | 148.1    | 192.9    | 235.5     |
| 3506<br>de 7                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V Sa              | (lb)   | (3,455)                               | (5,475)  | (7,960)  | (14,795)          | (23,115) | (33,285) | (43,375) | (52,940)  |
| ISO 3506-1<br>Grade 70<br>I stainless HCR 7 | Reduction for seismic<br>shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | αv,seis           | -      |                                       |          |          | 0.                | 90       |          |          |           |
| and s                                       | Strength reduction factor $\phi$ for tension <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | φ                 | -      |                                       |          |          | 0.65 <sup>3</sup> | / 0.754  |          |          |           |
|                                             | Strength reduction factor $\phi$ for shear <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | φ                 | -      |                                       |          |          | 0.60 <sup>3</sup> | / 0.654  |          |          |           |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | kN     | 29.3                                  | 46.4     | 67.4     | 125.4             | 195.8    | 282.0    | 367.5    | 448.6     |
| 80                                          | Nominal strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N <sub>sa</sub>   | (lb)   | (6,580)                               | (10,430) | (15,160) | (28,180)          | (44,025) | (63,395) | (82,620) | (100,840) |
| <sup>-</sup> S                              | as governed<br>by steel strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>sa</sub>   | kN     | 17.6                                  | 27.8     | 40.5     | 75.2              | 117.5    | 169.2    | 220.5    | 269.1     |
| 506<br>de 8(                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | v sa              | (lb)   | (3,950)                               | (6,260)  | (9,095)  | (16,910)          | (26,415) | (38,040) | (49,575) | (60,505)  |
| ISO 3506-1<br>Grade 80<br>stainless HCR     | Reduction for seismic<br>shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $lpha_{V,seis}$   | -      | 0.90                                  |          |          |                   |          |          |          |           |
| and s                                       | Strength reduction factor $\phi$ for tension <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | φ                 | -      | $0.65^3$ / $0.75^4$                   |          |          |                   |          |          |          |           |
|                                             | Strength reduction factor $\phi$ for shear <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\phi$            | -      |                                       |          |          | 0.60 <sup>3</sup> | / 0.654  |          |          |           |
| For Sh. 1                                   | $\phi$ for shear <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | φ<br>49 N 1 poi   | -      |                                       |          |          | 0.603             | ° 0.01   |          |          |           |

#### TABLE 7-STEEL DESIGN INFORMATION FOR METRIC THREADED ROD<sup>1</sup>

For **SI:** 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi.

<sup>1</sup>Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 or ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b, as applicable. Nuts and washers must be appropriate for the rod strength and type.

<sup>2</sup>For use with load combinations, Section 1605.1 of the 2024 or 2021 IBC, Section 1605.2 of the 2018 or 2015 IBC, or ACI 318-19 and ACI 318-14 5.3, as applicable, as set forth in ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable. Values correspond to a brittle steel element.

<sup>3</sup>Values correspond to a brittle steel element, applicable for standard threaded rods.

<sup>4</sup>Values correspond to a ductile steel element, applicable for fischer FIS A and RG M threaded rods only.

| DES                                         | SIGN                                   |                     |               |                                                                                                                                     |        | THREA  | DED ROD     | DIAMETE     | ER (mm) |         |         |  |
|---------------------------------------------|----------------------------------------|---------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|-------------|---------|---------|---------|--|
| INFORM                                      | MATION                                 | SYMBOL              | UNITS         | 8                                                                                                                                   | 10     | 12     | 16          | 20          | 24      | 27      | 30      |  |
|                                             | Minimum                                | h <sub>ef.min</sub> | mm            | 60                                                                                                                                  | 60     | 70     | 80          | 90          | 96      | 108     | 120     |  |
| Embedment                                   | Miniman                                | l lef,min           | (in.)         | (2.36)                                                                                                                              | (2.36) | (2.76) | (3.15)      | (3.54)      | (3.78)  | (4.25)  | (4.72)  |  |
| Depth                                       | Maximum                                | h <sub>ef.max</sub> | mm            | 160                                                                                                                                 | 200    | 240    | 320         | 400         | 480     | 540     | 600     |  |
|                                             | Maximum                                | l let, max          | (in.)         | (6.30)                                                                                                                              | (7.87) | (9.45) | (12.60)     | (15.75)     | (18.90) | (21.26) | (23.62) |  |
|                                             | Uncracked                              | k <sub>c.uncr</sub> | SI            |                                                                                                                                     |        |        | 1           | 0           |         |         |         |  |
| Effectiveness                               | Concrete                               | NC,UNC              | (in.lb)       |                                                                                                                                     |        |        | (2          | 4)          |         |         |         |  |
| Factor                                      | Factor Cracked                         |                     | SI            |                                                                                                                                     |        |        | 7.          | .1          |         |         |         |  |
|                                             | Concrete                               | K <sub>c,cr</sub>   | (in.lb)       | (17)                                                                                                                                |        |        |             |             |         |         |         |  |
|                                             | Anchor Spacing                         | Smin                | mm /<br>(in.) | s <sub>min</sub> = c <sub>min</sub>                                                                                                 |        |        |             |             |         |         |         |  |
| Minimum                                     |                                        | _                   | mm            | 40                                                                                                                                  | 45     | 55     | 65          | 85          | 105     | 120     | 140     |  |
| Value                                       | Edge Distance                          | Cmin                | (in.)         | (1.57)                                                                                                                              | (1.77) | (2.17) | (2.56)      | (3.35)      | (4.13)  | (4.72)  | (5.51)  |  |
|                                             | Member Thickness                       | h <sub>min</sub>    | mm<br>(in.)   | $\begin{array}{c} h_{ef} + 30 \ (\geq 100) \\ (h_{ef} + 1.25 \ [\geq 4]) \end{array} \hspace{1.5cm} h_{ef} + 2d_0^{-1} \end{array}$ |        |        |             |             |         |         |         |  |
| Critical<br>Value                           | Edge Distance for<br>Splitting Failure | Cac                 | mm<br>(in.)   |                                                                                                                                     |        | See S  | ection 4.1. | .10 of this | report. |         |         |  |
| Strength reduction factor $\phi$ , concrete | Tension                                | φ                   | -             |                                                                                                                                     |        |        | 0.0         | 65          |         |         |         |  |
| failure modes,<br>Condition B <sup>2</sup>  | Shear                                  | φ                   | -             |                                                                                                                                     |        |        | 0.1         | 70          |         |         |         |  |

#### TABLE 8-CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD

For **SI:** 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi.

<sup>1</sup>d<sub>o</sub> = drill hole diameter

<sup>2</sup>The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

# TABLE 9—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT <sup>1,2</sup>

|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                         |                     |        |        |        | Threa  | ded Rod | Diameter | (mm)    |         |         |       |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|---------------------|--------|--------|--------|--------|---------|----------|---------|---------|---------|-------|
|                                                                          | DESIGN INI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FORMA                         | TION                    | Symbol              | Units  | 8      | 10     | 12     | 16      | 20       | 24      | 27      | 30      |       |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                         |                     | mm     | 60     | 60     | 70     | 80      | 90       | 96      | 108     | 120     |       |
|                                                                          | Minimum Emb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bedmen                        | t Depth                 | h <sub>ef,min</sub> | (in.)  | (2.36) | (2.36) | (2.76) | (3.15)  | (3.54)   | (3.78)  | (4.25)  | (4.72)  |       |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h a alua a u                  | t Dauth                 | h                   | mm     | 160    | 200    | 240    | 320     | 400      | 480     | 540     | 600     |       |
|                                                                          | Maximum Em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | beamen                        | it Depth                | h <sub>ef,max</sub> | (in.)  | (6.30) | (7.87) | (9.45) | (12.60) | (15.75)  | (18.90) | (21.26) | (23.62) |       |
| lth                                                                      | Maximum Sho<br>Temperature =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | With Sustained          |                     | N/mm²  | 16.9   | 16.2   | 15.7   | 15.0    | 14.4     | 13.9    | 13.7    | 13.4    |       |
| renç<br>ete                                                              | (72°C),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Loads <sup>4</sup>      |                     | (psi)  | (2450) | (2345) | (2275) | (2170)  | (2090)   | (2020)  | (1985)  | (1950)  |       |
| d St<br>onci                                                             | Maximum Lon<br>Temperature =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | Short Term              |                     | N/mm²  | 21.1   | 20.2   | 19.6   | 18.7    | 18.0     | 17.4    | 17.1    | 16.8    |       |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | (43°C) <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | Loads only⁵             | _                   | (psi)  | (3060) | (2930) | (2845) | (2710)  | (2610)   | (2525)  | (2480)  | (2435)  |       |
| stic<br>acke                                                             | Maximum Sho<br>Temperature =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | 162°E With Sustained    | Tk,uncr             | N/mm²  | 12.9   | 12.3   | 12.0   | 11.4    | 11.0     | 10.6    | 10.4    | 10.2    |       |
| cteri<br>Jncr                                                            | . (72°C),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | Loads <sup>4</sup>      |                     | (psi)  | (1865) | (1785) | (1735) | (1655)  | (1595)   | (1540)  | (1515)  | (1485)  |       |
| nara<br>in L                                                             | Maximum Lon<br>Temperature =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g Term Short Torm             |                         |                     | N/mm²  | 21.1   | 20.2   | 19.6   | 18.7    | 18.0     | 17.4    | 17.1    | 16.8    |       |
| Ċ                                                                        | (50°C) <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122°F Loads only <sup>5</sup> |                         |                     | (psi)  | (3060) | (2930) | (2845) | (2710)  | (2610)   | (2525)  | (2480)  | (2435)  |       |
| <b>j</b> th                                                              | Maximum Short Term<br>Temperature = 162°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | With Sustained          |                     | N/mm²  | 9.8    | 9.7    | 9.4    | 9.3     | 9.1      | 9.0     | 9.0     | 9.0     |       |
| renç                                                                     | (72°C),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(72^{\circ}C),$              | Loads <sup>4</sup>      |                     | (psi)  | (1425) | (1405) | (1370) | (1345)  | (1325)   | (1310)  | (1300)  | (1300)  |       |
| d St<br>ncre                                                             | $\begin{array}{c c} (72^{\circ}C), \\ Maximum Long Term \\ Temperature = 109^{\circ}F \\ (43^{\circ}C)^{3} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Short Term<br>Loads only⁵     |                         | N/mm²               | 12.3   | 12.1   | 11.8   | 11.6   | 11.4    | 11.3     | 11.2    | 11.2    |         |       |
| Characteristic Bond Strength<br>in Cracked Concrete                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                         | (psi)               | (1785) | (1755) | (1710) | (1680) | (1655)  | (1640)   | (1625)  | (1625)  |         |       |
| stic<br>ckec                                                             | Maximum Sho<br>Temperature =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | With Sustained          | T <sub>k,cr</sub>   | N/mm²  | 7.5    | 7.4    | 7.2    | 7.1     | 7.0      | 6.9     | 6.8     | 6.8     |       |
| cteri<br>Cra                                                             | (72°C),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Loads <sup>4</sup>      | Loads <sup>4</sup>  |        | (psi)  | (1090) | (1070) | (1045)  | (1025)   | (1010)  | (1000)  | (990)   | (990) |
| nara<br>in                                                               | Maximum Lon<br>Temperature =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | Short Term              |                     | N/mm²  | 12.3   | 12.1   | 11.8   | 11.6    | 11.4     | 11.3    | 11.2    | 11.2    |       |
| Ċ                                                                        | (50°C) <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | Loads only <sup>5</sup> |                     | (psi)  | (1785) | (1755) | (1710) | (1680)  | (1655)   | (1640)  | (1625)  | (1625)  |       |
| Re                                                                       | duction Factor f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or Seisr                      | nic Tension             | lphaN,seis          | -      | -      | 0.97   | 0.96   | 0.94    | 0.92     | 0.90    | 0.89    | 0.88    |       |
|                                                                          | Dry Holes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Contin                        | uous Inspection         | $\phi_{d}$          | -      |        | 0.     | 65     |         |          | 0.      | 55      |         |       |
| ctors                                                                    | in Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Perio                         | dic Inspection          | Ψα                  | -      |        | 0.     | 65     |         |          | 0.      | 55      |         |       |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | Water<br>Saturated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contin                        | uous Inspection         | ,                   | -      | 0.55   |        |        |         | 0.65     |         |         |         |       |
| Reduction Fa<br>Permissible<br>Ition Condition                           | Holes<br>in Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Perio                         | dic Inspection          | Øws                 | -      | 0.55   |        |        |         | 0.65     |         |         |         |       |
| Red<br>Per<br>ation                                                      | Water-filled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contin                        | uous Inspection         |                     | -      |        |        |        | 0.      | 45       |         |         |         |       |
| for<br>stall                                                             | Water<br>Saturated<br>Holes<br>Water-filled<br>Water-filled<br>Water-filled<br>Holes<br>Water-filled<br>Holes<br>Water-filled<br>Holes<br>Water-filled<br>Holes<br>Water-filled<br>Holes<br>Water-filled<br>Holes<br>Water-filled<br>Holes<br>Water-filled<br>Holes<br>Water-filled<br>Holes<br>Water-filled<br>Holes<br>Water-filled<br>Holes<br>Holes<br>Water-filled<br>Holes<br>Holes<br>Water-filled<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes<br>Holes |                               | $\phi_{wf}$             | -                   |        |        |        | 0.     | 45      |          |         |         |         |       |
| Strer                                                                    | Underwater Continuous Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | ,                       | -                   |        |        |        | 0.     | 55      |          |         |         |         |       |
|                                                                          | in Concrete Periodic Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                         | $\phi_{uw}$         | -      | 0.55   |        |        |         |          |         |         |         |       |
| Modifi-<br>cation<br>Factors                                             | Water-filled<br>Holes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contin                        | uous Inspection         | V                   | -      | 0.91   |        | 0.92   |         | 0.89     | 0.88    | 0.86    | 0.83    |       |
| Modifi-<br>cation<br>Factors                                             | in Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Perio                         | dic Inspection          | K <sub>wf</sub>     | -      | 0.89   | 0.88   | 0.85   | 0.83    | 0.82     | 0.78    | 0.      | 77      |       |

For **SI:** 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c$  = 2,500 psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of ( $f_c / 2,500$ )<sup>0.1</sup> [for SI: ( $f_c / 17.2$ )<sup>0.1</sup>]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

| TABLE 10—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD |  |
|-------------------------------------------------------------------|--|
| IN HOLES DRILLED WITH A DIAMOND CORE BIT <sup>1, 2</sup>          |  |

|                                                                          |                                 |                                | -                         | _                   |       |           | 1       | hreaded | Rod Dian | neter (mm | 1)      |         |
|--------------------------------------------------------------------------|---------------------------------|--------------------------------|---------------------------|---------------------|-------|-----------|---------|---------|----------|-----------|---------|---------|
|                                                                          | DESIGN INF                      | ORMATION                       | N                         | Symbol              | Units | 10        | 12      | 16      | 20       | 24        | 27      | 30      |
|                                                                          | Minimum Engli                   |                                | - 41-                     | h                   | mm    | 60        | 70      | 80      | 90       | 96        | 108     | 120     |
|                                                                          | Minimum Emb                     | eament Dep                     | วเท                       | h <sub>ef,min</sub> | (in.) | (2.36)    | (2.76)  | (3.15)  | (3.54)   | (3.78)    | (4.25)  | (4.72)  |
|                                                                          |                                 | admont Da                      | nth                       | h                   | mm    | 200       | 240     | 320     | 400      | 480       | 540     | 600     |
|                                                                          | Maximum Emb                     | eament De                      | pin                       | h <sub>ef,max</sub> | (in.) | (7.87)    | (9.45)  | (12.60) | (15.75)  | (18.90)   | (21.26) | (23.62) |
| lth                                                                      | Maximum Cha                     | ut Tarma                       | With Sustained            |                     | N/mm² | 11.3      | 10.7    | 9.8     | 9.2      | 8.7       | 8.4     | 8.1     |
| renç<br>ete                                                              | Maximum Sho<br>Temperature = 16 | 2°F (72°C),                    | Loads <sup>4</sup>        |                     | (psi) | (1,635)   | (1,555) | (1,425) | (1,335)  | (1,265)   | (1,220) | (1,170) |
| d St<br>onci                                                             | Maximum Lor<br>Temperature = 10 |                                | Short Term                |                     | N/mm² | 14.1      | 13.4    | 12.3    | 11.5     | 10.9      | 10.5    | 10.1    |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Temperature – To                | 9 F (43 C)                     | Loads only⁵               | _                   | (psi) | (2,045)   | (1,945) | (1,785) | (1,670)  | (1,580)   | (1,525) | (1,465) |
| stic<br>acke                                                             | Maximum Short Term              | ut Tarma                       | With Sustained            | Tk,uncr             | N/mm² | 8.6       | 8.2     | 7.5     | 7.0      | 6.6       | 6.4     | 6.2     |
| cteri                                                                    | Temperature = 16                |                                | Loads <sup>4</sup>        |                     | (psi) | (1,245)   | (1,185) | (1,090) | (1,015)  | (965)     | (930)   | (895)   |
| in L                                                                     | Maximum Lor<br>Temperature = 12 |                                | Short Term                |                     | N/mm² | 14.1      | 13.4    | 12.3    | 11.5     | 10.9      | 10.5    | 10.1    |
| Ċ                                                                        |                                 | 2 P (30 C)                     | Loads only⁵               |                     | (psi) | (2,045)   | (1,945) | (1,785) | (1,670)  | (1,580)   | (1,525) | (1,465) |
| lth                                                                      | Maximum Sho                     | ut Tarma                       | With Sustained            |                     | N/mm² | 6.6       | 6.6     | 6.7     | 6.8      | 6.6       | 6.5     | 6.4     |
| renç                                                                     | Temperature = 16                |                                | Loads <sup>4</sup>        |                     | (psi) | (950)     | (965)   | (975)   | (985)    | (950)     | (940)   | (930)   |
| Characteristic Bond Strength<br>in Cracked Concrete                      | Maximum Lor<br>Temperature = 10 |                                | Short Term<br>Loads only⁵ |                     | N/mm² | 8.2       | 8.3     | 8.4     | 8.5      | 8.2       | 8.1     | 8.0     |
| Bon                                                                      | Temperature – To                | 9 F (43 C)                     |                           | _                   | (psi) | (1,190)   | (1,205) | (1,220) | (1,235)  | (1,190)   | (1,175) | (1,160) |
| stic<br>ckec                                                             | Maurineum Cha                   |                                | With Sustained            | T <sub>k,cr</sub>   | N/mm² | 5.0       | 5.1     | 5.1     | 5.2      | 5.0       | 4.9     | 4.9     |
| crac                                                                     | Maximum Sho<br>Temperature = 16 |                                | Loads <sup>4</sup>        |                     | (psi) | (725)     | (735)   | (745)   | (750)    | (725)     | (715)   | (710)   |
| in                                                                       | Maximum Lor<br>Temperature = 12 |                                | Short Term                |                     | N/mm² | 8.2       | 8.3     | 8.4     | 8.5      | 8.2       | 8.1     | 8.0     |
| ъ                                                                        |                                 | 2 F (50 C)                     | Loads only⁵               |                     | (psi) | (1,190)   | (1,205) | (1,220) | (1,235)  | (1,190)   | (1,175) | (1,160) |
|                                                                          | Reduction Factor for            | or Seismic T                   | ension                    | <i>α</i> N,seis     | -     | 0.97      | 0.96    | 0.94    | 0.92     | 0.90      | 0.89    | 0.88    |
| S                                                                        | Dry Holes                       | Continuo                       | us Inspection             | 4                   | -     |           | 0.65    |         |          | 0.55      |         | 0.45    |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | in Concrete                     | Periodi                        | c Inspection              | $\phi_{ m d}$       | -     |           | 0.65    |         |          | 0.55      |         | 0.45    |
| ible<br>iditio                                                           | Water Saturated<br>Holes        | Continuo                       | us Inspection             | 4                   | -     |           |         |         | 0.65     |           |         |         |
| Ith Reduction Fa<br>for Permissible<br>allation Conditio                 | in Concrete                     | Periodi                        | c Inspection              | $\phi_{ws}$         | -     |           | 0.65    |         |          | 0.55      |         | 0.45    |
| Redu                                                                     | Water-filled<br>Holes           | Continuo                       | us Inspection             | <i>d</i> , -        | -     |           |         |         | 0.45     |           |         |         |
| ength Reduction Factc<br>for Permissible<br>Installation Conditions      | in Concrete                     | Periodi                        | c Inspection              | Øwf                 | -     |           |         |         | 0.45     |           |         |         |
| Ins                                                                      | Underwater Continuous Insp      |                                | us Inspection             | 4                   | -     | 0.45 0.55 |         |         |          |           |         |         |
|                                                                          | in Concrete                     | n Concrete Periodic Inspection |                           | $\phi_{uw}$         | -     | 0.45 0.55 |         |         |          |           |         |         |
| Modifi-<br>cation<br>Factors                                             | Water-filled<br>Holes           | Continuo                       | us Inspection             | V.                  | -     | 0.92      | 0.95    |         |          | 1.0       |         |         |
| Mo<br>cat<br>Fac                                                         | in Concrete                     | Periodi                        | c Inspection              | $K_{wf}$            | -     | 0.91      | 0.92    | 0.95    | 0.       | 97        | 0.95    | 0.92    |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

 TABLE 11—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD

 IN HOLES DRILLED WITH A HAMMER DRILL AND HOLLOW DRILL BIT <sup>1, 2</sup>

|                                                                          |                                                                               |                                                                    |                         |                     |       |         |         | Threaded | Rod Diam | eter (mm) |         |         |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|---------------------|-------|---------|---------|----------|----------|-----------|---------|---------|
|                                                                          | DESIGN IN                                                                     | FORMA                                                              | TION                    | Symbol              | Units | 10      | 12      | 16       | 20       | 24        | 27      | 30      |
|                                                                          | Minimum Engl                                                                  | adman                                                              | t Donth                 | h                   | mm    | 60      | 70      | 80       | 90       | 96        | 108     | 120     |
|                                                                          | Minimum Emb                                                                   | beamen                                                             | i Depin                 | h <sub>ef,min</sub> | (in.) | (2.36)  | (2.76)  | (3.15)   | (3.54)   | (3.78)    | (4.25)  | (4.72)  |
|                                                                          |                                                                               | h a alua a u                                                       | t Dauth                 | h                   | mm    | 200     | 240     | 320      | 400      | 480       | 540     | 600     |
|                                                                          | Maximum Eml                                                                   | beamen                                                             | it Depth                | h <sub>ef,max</sub> | (in.) | (7.87)  | (9.45)  | (12.60)  | (15.75)  | (18.90)   | (21.26) | (23.62) |
| lth                                                                      | Maximum Sho                                                                   |                                                                    | With Sustained          |                     | N/mm² | 15.6    | 14.9    | 13.8     | 13.1     | 12.6      | 12.2    | 11.9    |
| reng<br>ete                                                              | Temperature = (72°C),                                                         |                                                                    | Loads <sup>4</sup>      |                     | (psi) | (2,265) | (2,160) | (2,005)  | (1,905)  | (1,820)   | (1,775) | (1,730) |
| d Sti<br>oncr                                                            | Maximum Lon<br>Temperature =                                                  | g Term                                                             | Short Term              |                     | N/mm² | 19.5    | 18.6    | 17.3     | 16.4     | 15.7      | 15.3    | 14.9    |
| Characteristic Bond Strength<br>in Uncracked Concrete                    |                                                                               | (43°C) <sup>3</sup> Loads on<br>laximum Short Term<br>with Sustain | Loads only⁵             |                     | (psi) | (2,830) | (2,700) | (2,510)  | (2,380)  | (2,275)   | (2,220) | (2,160) |
| stic<br>acke                                                             |                                                                               | ximum Short Term With Sustai                                       |                         | Tk,uncr             | N/mm² | 11.9    | 11.3    | 10.6     | 10.0     | 9.6       | 9.3     | 9.1     |
| cteris                                                                   | (72°C),                                                                       | $(72^{\circ}C),$ Loads <sup>4</sup>                                |                         |                     | (psi) | (1,725) | (1,645) | (1,530)  | (1,450)  | (1,390)   | (1,355) | (1,320) |
| iarao<br>in U                                                            | Maximum Lon                                                                   | ong Term<br>e = 122°F Short Terr                                   | Short Term              |                     | N/mm² | 19.5    | 18.6    | 17.3     | 16.4     | 15.7      | 15.3    | 14.9    |
| Ч                                                                        |                                                                               | (50°C) <sup>3</sup>                                                | Loads only <sup>5</sup> |                     | (psi) | (2,830) | (2,700) | (2,510)  | (2,380)  | (2,275)   | (2,220) | (2,160) |
| lth                                                                      |                                                                               |                                                                    | With Sustained          |                     | N/mm² | 9.6     | 9.4     | 9.3      | 9.2      | 9.1       | 9.1     | 9.1     |
| Characteristic Bond Strength<br>in Cracked Concrete                      | . (72°C),                                                                     |                                                                    | Loads <sup>4</sup>      |                     | (psi) | (1,390) | (1,370) | (1,345)  | (1,335)  | (1,325)   | (1,325) | (1,325) |
| cteristic Bond Strer<br>Cracked Concrete                                 | Maximum Lon<br>Temperature =                                                  |                                                                    | Short Term              |                     | N/mm² | 12.0    | 11.8    | 11.6     | 11.5     | 11.4      | 11.4    | 11.4    |
| Bon<br>I Co                                                              | (43°C) <sup>3</sup>                                                           | - 109 F                                                            | Loads only⁵             | _                   | (psi) | (1,740) | (1,710) | (1,680)  | (1,670)  | (1,655)   | (1,655) | (1,655) |
| stic<br>ckec                                                             | Maximum Sho<br>Temperature =                                                  |                                                                    | with Sustained          | T <sub>k,cr</sub>   | N/mm² | 7.3     | 7.2     | 7.1      | 7.0      | 7.0       | 7.0     | 7.0     |
| cteri<br>Cra                                                             | (72°C),                                                                       |                                                                    | Loads <sup>4</sup>      |                     | (psi) | (1,060) | (1,045) | (1,025)  | (1,015)  | (1,010)   | (1,010) | (1,010) |
| in<br>in                                                                 | Maximum Lon<br>Temperature =                                                  |                                                                    | Short Term              |                     | N/mm² | 12.0    | 11.8    | 11.6     | 11.5     | 11.4      | 11.4    | 11.4    |
| Ċ                                                                        | (50°C) <sup>3</sup>                                                           |                                                                    | Loads only⁵             |                     | (psi) | (1,740) | (1,710) | (1,680)  | (1,670)  | (1,655)   | (1,655) | (1,655) |
| Re                                                                       | duction Factor f                                                              | or Seisr                                                           | nic Tension             | lphaN,seis          | -     | 0.97    | 0.96    | 0.94     | 0.92     | 0.90      | 0.89    | 0.88    |
| actors<br>ons                                                            | Dry Holes                                                                     | Contin                                                             | uous Inspection         | 4                   | -     |         |         | 0.65     |          |           | 0.      | 55      |
| Reduction Fi<br>Permissible<br>tion Condition                            | Dry Holes<br>Dry Holes<br>in Concrete<br>Perioc<br>Perioc<br>Perioc<br>Perioc |                                                                    | dic Inspection          | $\phi_{d}$          | -     |         |         | 0.65     |          |           | 0.      | 55      |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | Water<br>Saturated                                                            | Continuous Inspection<br>Periodic Inspection                       |                         | 4                   | -     |         |         |          | 0.65     |           |         |         |
| Streng<br>1<br>Insta                                                     | E 5 High Saturated<br>Holes<br>in Concrete                                    |                                                                    |                         | Øws                 | -     | 0.65    |         |          |          |           |         |         |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

|       | DESIGN                                                    | Symbol          | Unito  |         |          |          | Rebar size | 1        |          |          |  |  |
|-------|-----------------------------------------------------------|-----------------|--------|---------|----------|----------|------------|----------|----------|----------|--|--|
|       | INFORMATION                                               | Symbol          | Units  | 10      | 12       | 16       | 20         | 25       | 28       | 32       |  |  |
|       | Nominal bar diameter                                      | da              | mm     | 10      | 12       | 16       | 20         | 25       | 28       | 32       |  |  |
|       |                                                           | U <sub>a</sub>  | (in.)  | (0.39)  | (0.47)   | (0.63)   | (0.79)     | (0.98)   | (1.10)   | (1.26)   |  |  |
| В     | ar effective cross-sectional area                         | ^               | mm²    | 78.5    | 113.0    | 201.0    | 314.0      | 491.0    | 616.0    | 804.0    |  |  |
| Di    | ar enective cross-sectional area                          | A <sub>se</sub> | (in.²) | (0.122) | (0.175)  | (0.312)  | (0.487)    | (0.761)  | (0.955)  | (1.246)  |  |  |
|       |                                                           | N <sub>sa</sub> | kN     | 42.4    | 61.0     | 108.5    | 169.6      | 265.1    | 332.6    | 434.2    |  |  |
|       | Nominal strength                                          |                 | (lb)   | (9,530) | (13,720) | (24,400) | (38,120)   | (59,605) | (74,780) | (97,605) |  |  |
| B500B | as governed<br>by steel strength                          | V               | kN     | 25.4    | 36.6     | 65.1     | 101.7      | 159.1    | 199.6    | 260.5    |  |  |
|       |                                                           | Vsa             | (lb)   | (5,720) | (8,230)  | (14,640) | (22,870)   | (35,765) | (44,870) | (58,560) |  |  |
| l 488 | Reduction for seismic shear                               | αv,seis         | -      |         |          |          | 1.0        |          |          |          |  |  |
| DIN   | Strength reduction factor $\phi$ for tension <sup>2</sup> | φ               | -      |         |          |          | 0.65       |          |          |          |  |  |
|       | Strength reduction factor $\phi$ for shear <sup>2</sup>   | $\phi$          | -      |         | 0.60     |          |            |          |          |          |  |  |

#### TABLE 12-STEEL DESIGN INFORMATION FOR METRIC REINFORCING BAR<sup>1</sup>

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 150.0 psi.

<sup>1</sup>Values provided for common reinforcing bar based on specified strength and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 or ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b, as applicable.

<sup>2</sup>For use with load combinations Section 1605.1 of the 2024 or 2021 IBC, Section 1605.2 of the 2018 or 2015 IBC, 0r ACI 318-19 and ACI 318-14 5.3, as applicable, as set forth in ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable. Values correspond to a brittle steel element.

#### TABLE 13—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC REINFORCING BAR

|                                                                   |                                           |                     |             |                                                                      |        |            | Rebar Size        |                              |         |         |  |
|-------------------------------------------------------------------|-------------------------------------------|---------------------|-------------|----------------------------------------------------------------------|--------|------------|-------------------|------------------------------|---------|---------|--|
|                                                                   | SIGN<br>MATION                            | Symbol              | Units       | 10                                                                   | 12     | 16         | 20                | 25                           | 28      | 32      |  |
|                                                                   | N dia ina ma                              |                     | mm          | 60                                                                   | 70     | 80         | 90                | 100                          | 112     | 128     |  |
| Embedment                                                         | Minimum                                   | h <sub>ef,min</sub> | (in.)       | (2.36)                                                               | (2.76) | (3.15)     | (3.54)            | (3.94)                       | (4.41)  | (5.04)  |  |
| Depth                                                             | Maximum                                   | b.                  | mm          | 200                                                                  | 240    | 320        | 400               | 500                          | 560     | 640     |  |
|                                                                   | Waximum                                   | h <sub>ef,max</sub> | (in.)       | (7.87)                                                               | (9.45) | (12.60)    | (15.75)           | (19.69)                      | (22.05) | (25.20) |  |
|                                                                   | Uncracked                                 | k <sub>c.uncr</sub> | SI          |                                                                      |        |            | 10                |                              |         |         |  |
| Effectiveness                                                     | Concrete                                  | NC,UNCT             | (in.lb)     |                                                                      |        |            | (24)              |                              |         |         |  |
| Factor                                                            | Cracked                                   | K <sub>c.cr</sub>   | SI          |                                                                      |        |            | 7.1               |                              |         |         |  |
|                                                                   | Concrete                                  | NC, C1              | (in.lb)     |                                                                      |        |            | (17)              |                              |         |         |  |
|                                                                   | Anchor Spacing                            | Smin                | mm<br>(in.) | s <sub>min</sub> = c <sub>min</sub>                                  |        |            |                   |                              |         |         |  |
|                                                                   | Edge Distance                             | <u> </u>            | mm          | 45                                                                   | 55     | 65         | 85                | 110                          | 130     | 160     |  |
| Minimum                                                           | Euge Distance                             | Cmin                | (in.)       | (1.77)                                                               | (2.17) | (2.56)     | (3.35)            | (4.33)                       | (5.12)  | (6.30)  |  |
| Value                                                             | Member<br>Thickness                       | h <sub>min</sub>    | mm<br>(in.) | h <sub>ef</sub> + 30<br>(≥ 100)<br>(h <sub>ef</sub> + 1.25<br>[≥ 4]) |        |            | h <sub>ef</sub> + | 2d <sub>0</sub> <sup>1</sup> |         |         |  |
| Critical<br>Value                                                 | Edge Distance<br>for Splitting<br>Failure | Cac                 | mm<br>(in.) |                                                                      |        | See Sectio | n 4.1.10 of 1     | this report.                 |         |         |  |
| Strength<br>reduction factor                                      | Tension                                   | φ                   | -           |                                                                      |        |            | 0.65              |                              |         |         |  |
| <i>φ</i> , concrete<br>failure modes,<br>Condition B <sup>2</sup> | Shear                                     | φ                   | -           |                                                                      |        |            | 0.70              |                              |         |         |  |

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa. For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi.

<sup>1</sup>d<sub>o</sub> = drill hole diameter

<sup>2</sup>The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

ICC-ES<sup>®</sup> Most Widely Accepted and Trusted

# TABLE 14—BOND STRENGTH DESIGN INFORMATION FOR METRIC REINFORCING BAR IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT 1, 2

|                                                                          |                                                  |              |                         |                     |       |         |           | F       | Rebar Siz | e       |         |         |
|--------------------------------------------------------------------------|--------------------------------------------------|--------------|-------------------------|---------------------|-------|---------|-----------|---------|-----------|---------|---------|---------|
|                                                                          | DESIGN INF                                       | ORMATION     | 4                       | Symbol              | Units | 10      | 12        | 16      | 20        | 25      | 28      | 32      |
|                                                                          | Minimum Fireb                                    |              | . 41.                   | 4                   | mm    | 60      | 70        | 80      | 90        | 100     | 112     | 128     |
|                                                                          | Minimum Emb                                      | edment Dep   | oth                     | h <sub>ef,min</sub> | (in.) | (2.36)  | (2.76)    | (3.15)  | (3.54)    | (3.94)  | (4.41)  | (5.04)  |
|                                                                          |                                                  |              | - 41-                   | 4                   | mm    | 200     | 240       | 320     | 400       | 500     | 560     | 640     |
|                                                                          | Maximum Emb                                      | eament Dep   | pin                     | h <sub>ef,max</sub> | (in.) | (7.87)  | (9.45)    | (12.60) | (15.75)   | (19.69) | (22.05) | (25.20) |
| ţ                                                                        | Mauimum Cha                                      |              | With Sustained          |                     | N/mm² | 10.7    | 10.5      | 10.1    | 9.8       | 9.5     | 9.4     | 9.3     |
| renç<br>ete                                                              | Maximum Short Term<br>Temperature = 162°F (72    |              | Loads <sup>4</sup>      |                     | (psi) | (1,555) | (1,520)   | (1,460) | (1,415)   | (1,380) | (1,360) | (1,345) |
| d St<br>onci                                                             | Maximum Lon<br>Temperature = 10                  |              | Short Term              |                     | N/mm² | 13.4    | 13.1      | 12.6    | 12.2      | 11.9    | 11.7    | 11.6    |
| Bon                                                                      | Temperature – To                                 | 9 F (43 C)   | Loads only <sup>5</sup> | _                   | (psi) | (1,945) | (1,900)   | (1,825) | (1,770)   | (1,725) | (1,695) | (1,680) |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Maximum Sho                                      | art Tarma    | With Sustained          | Tk,uncr             | N/mm² | 8.2     | 8.0       | 7.7     | 7.4       | 7.3     | 7.1     | 7.1     |
| cteri                                                                    | Temperature = 16                                 | 2°F (72°C),  | Loads <sup>4</sup>      |                     | (psi) | (1,185) | (1,160)   | (1,115) | (1,080)   | (1,055) | (1,035) | (1,025) |
| in L                                                                     | Maximum Long Terr<br>Temperature = 122°F (5      |              | Short Term              |                     | N/mm² | 13.4    | 13.1      | 12.6    | 12.2      | 11.9    | 11.7    | 11.6    |
| Ċ                                                                        |                                                  | 21 (30 0)    | Loads only <sup>5</sup> |                     | (psi) | (1,945) | (1,900)   | (1,825) | (1,770)   | (1,725) | (1,695) | (1,680) |
| gth                                                                      | Maximum Sho                                      | ort Torm     | With Sustained          |                     | N/mm² | 7.2     | 7.2       | 7.3     | 7.3       | 7.4     | 7.4     | 7.4     |
| renç                                                                     | Maximum Short Term<br>Temperature = 162°F (72°C) |              | Loads <sup>4</sup>      |                     | (psi) | (1,045) | (1,045)   | (1,055) | (1,055)   | (1,065) | (1,065) | (1,080) |
| id St                                                                    | Maximum Lon<br>Temperature = 10                  |              | 3 Short Term            |                     | N/mm² | 9.0     | 9.0       | 9.1     | 9.1       | 9.2     | 9.2     | 9.3     |
| Bon<br>I Co                                                              |                                                  |              | Loads only <sup>5</sup> | T <sub>k,cr</sub>   | (psi) | (1,305) | (1,305)   | (1,320) | (1,320)   | (1,335) | (1,335) | (1,350) |
| Characteristic Bond Strength<br>in Cracked Concrete                      | Maximum Sho                                      | ort Torm     | With Sustained          |                     | N/mm² | 5.5     | 5.5       | 5.6     | 5.6       | 5.6     | 5.6     | 5.7     |
| cteri<br>Cra                                                             | Temperature = 16                                 | 2°F (72°C),  | Loads <sup>4</sup>      |                     | (psi) | (795)   | (795)     | (805)   | (805)     | (815)   | (815)   | (825)   |
| in<br>in                                                                 | Maximum Lon<br>Temperature = 12                  |              | Short Term              |                     | N/mm² | 9.0     | 9.0       | 9.1     | 9.1       | 9.2     | 9.2     | 9.3     |
| Ċ                                                                        |                                                  | 21 (00 0)    | Loads only⁵             |                     | (psi) | (1,305) | (1,305)   | (1,320) | (1,320)   | (1,335) | (1,335) | (1,350) |
| F                                                                        | Reduction Factor fo                              | or Seismic T | ension                  | <i>α</i> N,seis     | -     | 0.97    | 0.96      | 0.94    | 0.92      | 0.90    | 0.88    | 0.87    |
| S                                                                        | Dry Holes                                        | Continuo     | us Inspection           | фа                  | -     |         | 0.65      |         |           | 0.      | 55      |         |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | in Concrete                                      | Periodio     | c Inspection            | Ψα                  | -     |         | 0.65 0.55 |         |           |         |         |         |
| ength Reduction Facto<br>for Permissible<br>Installation Conditions      | Water Saturated<br>Holes                         | Continuo     | us Inspection           | $\phi_{ws}$         | -     |         |           |         | 0.65      |         |         |         |
| uctic<br>Triss<br>Cor                                                    | in Concrete                                      | Periodio     | c Inspection            | ψws                 | -     |         |           |         | 0.65      |         |         |         |
| Red<br>Peri                                                              | Water-filled<br>Holes                            | Continuo     | us Inspection           | Øwf                 | -     |         |           |         | 0.45      |         |         |         |
| gth I<br>for<br>talla                                                    | in Concrete                                      | Periodio     | c Inspection            | φωτ                 | -     |         |           |         | 0.45      |         |         |         |
| Ins                                                                      | Underwater<br>Installation                       | Continuo     | us Inspection           | φ <sub>uw</sub>     | -     |         |           |         | 0.55      |         |         |         |
|                                                                          | in Concrete                                      | Periodio     | c Inspection            | φuw                 | -     |         |           |         | 0.55      | 1       | n       |         |
| Modifi-<br>cation<br>Factors                                             | Water-filled<br>Holes                            | Continuo     | us Inspection           | $K_{wf}$            | -     |         | 0.92      |         | 0.89      | 0.88    | 0.86    | 0.86    |
| Mo<br>cai<br>Fac                                                         | in Concrete                                      | Periodio     | c Inspection            | 1XW7                | -     | 0.88    | 0.85      | 0.83    | 0.82      | 0.78    | 0.      | 77      |

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of ( $f_c / 2,500$ )<sup>0.1</sup> [for SI: ( $f_c / 17.2$ )<sup>0.1</sup>]. See Section 4.1.4 of this report. <sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

| TABLE 15—BOND STRENGTH DESIGN INFORMATION FOR METRIC REINFORCING BAR |
|----------------------------------------------------------------------|
| IN HOLES DRILLED WITH A DIAMOND CORE BIT <sup>1, 2</sup>             |

|                                                                          | DEGION INF                                                                                          |                                    |                             |                     |       |           |           | F       | Rebar Siz | e       |         |         |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|---------------------|-------|-----------|-----------|---------|-----------|---------|---------|---------|
|                                                                          | DESIGN INF                                                                                          | ORMATION                           |                             | Symbol              | Units | 10        | 12        | 16      | 20        | 25      | 28      | 32      |
|                                                                          | Minimum Emb                                                                                         | odmont Dor                         | th                          | h <sub>ef.min</sub> | mm    | 60        | 70        | 80      | 90        | 100     | 112     | 128     |
|                                                                          |                                                                                                     | eament Dep                         |                             | l lef,min           | (in.) | (2.36)    | (2.76)    | (3.15)  | (3.54)    | (3.94)  | (4.41)  | (5.04)  |
|                                                                          | Maximum Emb                                                                                         | odmont Dor                         | oth                         | h.                  | mm    | 200       | 240       | 320     | 400       | 500     | 560     | 640     |
|                                                                          |                                                                                                     | edment Dep                         | טווז<br>סנוז                | h <sub>ef,max</sub> | (in.) | (7.87)    | (9.45)    | (12.60) | (15.75)   | (19.69) | (22.05) | (25.20) |
| <b>j</b> th                                                              | Maximum Short Term                                                                                  |                                    | With Sustained              |                     | N/mm² | 7.1       | 7.0       | 7.0     | 6.9       | 6.8     | 6.7     | 6.7     |
| renç<br>rete                                                             | Temperature = 16                                                                                    | 2°F (72°C),                        | Loads <sup>4</sup>          |                     | (psi) | (1,035)   | (1,020)   | (1,010) | (1,000)   | (985)   | (975)   | (975)   |
| d St<br>onci                                                             | Maximum Lor<br>Temperature = 10                                                                     |                                    | Short Term                  |                     | N/mm² | 8.9       | 8.8       | 8.7     | 8.6       | 8.5     | 8.4     | 8.4     |
| Bon<br>sd C                                                              | Temperature - To                                                                                    | 91 (43 0)                          | Loads only⁵                 | -                   | (psi) | (1,290)   | (1,275)   | (1,260) | (1,245)   | (1,235) | (1,220) | (1,220) |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Maximum Sho                                                                                         | art Torm                           | With Sustained              | Tk,uncr             | N/mm² | 5.4       | 5.4       | 5.3     | 5.2       | 5.2     | 5.1     | 5.1     |
| cteri                                                                    | Temperature = 162°F (7                                                                              | 2°F (72°C),                        | Loads <sup>4</sup>          |                     | (psi) | (785)     | (780)     | (770)   | (760)     | (750)   | (745)   | (745)   |
| iara<br>in L                                                             | Maximum Long Te<br>Temperature = 122°F (                                                            |                                    | Short Term                  |                     | N/mm² | 8.9       | 8.8       | 8.7     | 8.6       | 8.5     | 8.4     | 8.4     |
| ч                                                                        |                                                                                                     | 21 (30 0)                          | Loads only⁵                 |                     | (psi) | (1,290)   | (1,275)   | (1,260) | (1,245)   | (1,235) | (1,220) | (1,220) |
| gth                                                                      | Maximum Sha                                                                                         | ort Torm                           | With Sustained              |                     | N/mm² | 4.1       | 4.3       | 4.5     | 4.5       | 4.5     | 4.6     | 4.6     |
| irenç<br>ste                                                             | Maximum Short Term<br>Temperature = 162°F (72°C)<br>Maximum Long Term<br>Temperature = 109°F (43°C) |                                    | Loads <sup>4</sup>          |                     | (psi) | (590)     | (625)     | (650)   | (650)     | (650)   | (660)   | (660)   |
| Characteristic Bond Strength<br>in Cracked Concrete                      |                                                                                                     |                                    | 3 Short Term<br>Loads only⁵ |                     | N/mm² | 5.1       | 5.4       | 5.6     | 5.6       | 5.6     | 5.7     | 5.7     |
| Bon<br>I Co                                                              |                                                                                                     |                                    |                             | T <sub>k.cr</sub>   | (psi) | (740)     | (785)     | (810)   | (810)     | (810)   | (825)   | (825)   |
| stic<br>cked                                                             | Maximum Sho                                                                                         | art Torm                           | With Sustained              |                     | N/mm² | 3.1       | 3.3       | 3.4     | 3.4       | 3.4     | 3.5     | 3.5     |
| cteri<br>Cra                                                             | Temperature = 16                                                                                    | 2°F (72°C),                        | Loads <sup>4</sup>          |                     | (psi) | (450)     | (480)     | (495)   | (495)     | (495)   | (505)   | (505)   |
| in                                                                       | Maximum Lor<br>Temperature = 12                                                                     | lg Term<br>2°E (50°C) <sup>3</sup> | Short Term                  |                     | N/mm² | 5.1       | 5.4       | 5.6     | 5.6       | 5.6     | 5.7     | 5.7     |
| Ċ                                                                        |                                                                                                     | 21 (30 0)                          | Loads only⁵                 |                     | (psi) | (740)     | (785)     | (810)   | (810)     | (810)   | (825)   | (825)   |
| F                                                                        | Reduction Factor for                                                                                | or Seismic T                       | ension                      | <i>α</i> N,seis     | -     | 0.97      | 0.96      | 0.94    | 0.92      | 0.90    | 0.88    | 0.87    |
| ទ                                                                        | Dry Holes                                                                                           | Continuo                           | us Inspection               | фа                  | -     |           | 0.65 0.55 |         |           |         |         |         |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | in Concrete                                                                                         | Periodio                           | c Inspection                | Ψα                  | -     | 0.65 0.55 |           |         |           |         |         |         |
| ength Reduction Facto<br>for Permissible<br>Installation Conditions      | Water Saturated<br>Holes                                                                            | Continuo                           | us Inspection               | $\phi_{ws}$         | -     |           |           |         | 0.65      |         |         |         |
| niss                                                                     | in Concrete                                                                                         | Periodio                           | c Inspection                | Ψws                 | -     |           | 0.65      |         |           | 0.      | 55      |         |
| Perr                                                                     | Water-filled<br>Holes                                                                               | Continuo                           | us Inspection               | Øwf                 | -     |           |           |         | 0.45      |         |         |         |
| for<br>falla                                                             | in Concrete                                                                                         | Periodio                           | c Inspection                | φωτ                 | -     |           |           |         | 0.45      |         |         |         |
| Ins                                                                      | Underwater<br>Installation                                                                          | Continuo                           | us Inspection               | 4                   | -     | 0.4       | 45        |         |           | 0.55    |         |         |
|                                                                          | in Concrete                                                                                         | Periodio                           | c Inspection                | $\phi_{uw}$         | -     | 0.4       | 45        | 0.55    |           |         |         |         |
| Modifi-<br>cation<br>Factors                                             | Water-filled<br>Holes                                                                               | Continuo                           | us Inspection               | $K_{wf}$            | -     | 0.92      | 0.95      | 1.0     |           |         |         |         |
| Mo<br>cat<br>Fac                                                         | in Concrete                                                                                         | Periodic                           | c Inspection                | <b>N</b> Wf         | -     | 0.91      | 0.92      | 0.95    | 0.        | 97      | 0.9     | 95      |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

**CC-ES**<sup>®</sup> Most Widely Accepted and Trusted

# TABLE 16—BOND STRENGTH DESIGN INFORMATION FOR METRIC REINFORCING BAR IN HOLES DRILLED WITH A HAMMER DRILL AND HOLLOW DRILL BIT <sup>1, 2</sup>

|                                                                          |                                                                                                                      |                                    |                           |                     |       |         |         | Reba    | r Size  |         |         |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|---------------------|-------|---------|---------|---------|---------|---------|---------|
|                                                                          | DESIGN INF                                                                                                           | ORMATION                           | 4                         | Symbol              | Units | 10      | 12      | 16      | 20      | 25      | 28      |
|                                                                          | Minimum Emb                                                                                                          | admont Dar                         | th                        | <b>b</b>            | mm    | 60      | 70      | 80      | 90      | 100     | 112     |
|                                                                          |                                                                                                                      | edment Dep                         | Jui                       | h <sub>ef,min</sub> | (in.) | (2.36)  | (2.76)  | (3.15)  | (3.54)  | (3.94)  | (4.41)  |
|                                                                          |                                                                                                                      | adment De                          | ath                       | h                   | mm    | 200     | 240     | 320     | 400     | 500     | 560     |
|                                                                          | Maximum Emb                                                                                                          | eament Dep                         | JUI                       | h <sub>ef,max</sub> | (in.) | (7.87)  | (9.45)  | (12.60) | (15.75) | (19.69) | (22.05) |
| <b>j</b> th                                                              | Maximum Sho                                                                                                          | ort Torm                           | With Sustained            |                     | N/mm² | 7.7     | 7.8     | 7.9     | 8.2     | 8.3     | 8.4     |
| kter<br>kter<br>kter<br>kter<br>kter<br>kter<br>kter<br>kter             | Temperature = 16                                                                                                     | 62°F (72°C),                       | Loads <sup>4</sup>        |                     | (psi) | (1,115) | (1,135) | (1,150) | (1,185) | (1,205) | (1,220) |
|                                                                          | Maximum Lor<br>Temperature = 10                                                                                      |                                    | Short Term                |                     | N/mm² | 9.6     | 9.8     | 9.9     | 10.2    | 10.4    | 10.5    |
|                                                                          |                                                                                                                      | 19 F (43 C)                        | Loads only⁵               | _                   | (psi) | (1,390) | (1,420) | (1,435) | (1,480) | (1,510) | (1,525) |
|                                                                          | Movimum Cha                                                                                                          | art Tarma                          | With Sustained            | Tk,uncr             | N/mm² | 5.9     | 6.0     | 6.0     | 6.2     | 6.3     | 6.4     |
| cteri                                                                    | ឌូ ឌូ Maximum Short Term<br>អ្វី ជ Temperature = 162°F (72°C                                                         | 62°F (72°C),                       | Loads <sup>4</sup>        |                     | (psi) | (850)   | (865)   | (875)   | (900)   | (920)   | (930)   |
| in L                                                                     | Maximum Lor<br>Temperature = 12                                                                                      |                                    | Short Term                |                     | N/mm² | 9.6     | 9.8     | 9.9     | 10.2    | 10.4    | 10.5    |
| СҺ                                                                       |                                                                                                                      | .21 (00 0)                         | Loads only <sup>5</sup>   |                     | (psi) | (1,390) | (1,420) | (1,435) | (1,480) | (1,510) | (1,525) |
| gth                                                                      | Maximum Short Term<br>Temperature = 162°F (72°C),<br>Maximum Long Term<br>Temperature = 100°F (43°C) <sup>3</sup> SI |                                    | With Sustained            |                     | N/mm² | 5.0     | 5.1     | 5.4     | 5.8     | 6.1     | 6.3     |
| Characteristic Bond Strength<br>in Cracked Concrete                      |                                                                                                                      |                                    | Loads <sup>4</sup>        |                     | (psi) | (720)   | (745)   | (790)   | (835)   | (880)   | (915)   |
| racteristic Bond Strer<br>in Cracked Concrete                            |                                                                                                                      |                                    | Short Term<br>Loads only⁵ | Thor                | N/mm² | 6.2     | 6.4     | 6.8     | 7.2     | 7.6     | 7.9     |
| Bon<br>d Co                                                              |                                                                                                                      |                                    |                           |                     | (psi) | (900)   | (930)   | (985)   | (1,045) | (1,100) | (1,145) |
| istic<br>ckee                                                            | Maximum Sho                                                                                                          | ort Term                           | With Sustained            | T <sub>k,cr</sub>   | N/mm² | 3.8     | 3.9     | 4.1     | 4.4     | 4.6     | 4.8     |
| cteri<br>Cra                                                             | Temperature = 16                                                                                                     | 62°F (72°C),                       | Loads <sup>4</sup>        |                     | (psi) | (550)   | (565)   | (600)   | (635)   | (670)   | (700)   |
| nara<br>in                                                               | Maximum Lor<br>Temperature = 12                                                                                      | ng Term<br>2°F (50°C) <sup>3</sup> | Short Term                |                     | N/mm² | 6.2     | 6.4     | 6.8     | 7.2     | 7.6     | 7.9     |
| ō                                                                        |                                                                                                                      | 21 (00 0)                          | Loads only⁵               |                     | (psi) | (900)   | (930)   | (985)   | (1,045) | (1,100) | (1,145) |
|                                                                          | Reduction Factor fo                                                                                                  | or Seismic T                       | ension                    | αN,seis             | -     | 0.97    | 0.96    | 0.94    | 0.92    | 0.90    | 0.88    |
| actors                                                                   | Dry Holes                                                                                                            | Continuo                           | us Inspection             | 4.                  | -     |         |         | 0.65    |         |         | 0.55    |
| Reduction Fa<br>Permissible<br>ttion Condition                           | in Concrete                                                                                                          | Periodio                           | c Inspection              | $\phi_{ m d}$       | -     |         | 0.65 0. |         |         |         |         |
| ength Reduction Facto<br>for Permissible<br>Installation Conditions      | Water Saturated                                                                                                      | Continuo                           | us Inspection             | фws                 | -     |         |         | 0.      | 65      |         |         |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | Holes<br>in Concrete                                                                                                 | Periodio                           | Periodic Inspection       |                     | -     | 0.65    |         |         |         |         |         |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

|                                                                  | Strength reduction facto $\phi$ for tension <sup>2</sup> Strength reduction facto $\phi$ for shear <sup>2</sup> Nominal strength         as governed         by steel strength         Reduction for seismic she         Strength reduction facto $\phi$ for tension <sup>2</sup> Strength reduction facto $\phi$ for shear <sup>2</sup> |             |        |         | Ancho    | or Metrical Threa | ad Size  |          |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|---------|----------|-------------------|----------|----------|--|--|
|                                                                  | INFORMATION                                                                                                                                                                                                                                                                                                                              | SYMBOL      | UNITS  | M8      | M10      | M12               | M16      | M20      |  |  |
| Nie                                                              | unin al Anakan Diamatan                                                                                                                                                                                                                                                                                                                  | d           | mm     | 8       | 10       | 12                | 16       | 20       |  |  |
| INO                                                              | ominal Anchor Diameter                                                                                                                                                                                                                                                                                                                   | de          | (in.)  | (0.31)  | (0.39)   | (0.47)            | (0.63)   | (0.79)   |  |  |
| 0                                                                | Nuter Anober Diemeter                                                                                                                                                                                                                                                                                                                    | d           | mm     | 12.3    | 16.0     | 18.3              | 22.3     | 28.3     |  |  |
|                                                                  |                                                                                                                                                                                                                                                                                                                                          | da          | (in.)  | (0.48)  | (0.63)   | (0.72)            | (0.88)   | (1.11)   |  |  |
| Anchore                                                          | effective cross-sectional area                                                                                                                                                                                                                                                                                                           | Ase         | mm²    | 73.5    | 137.6    | 160.4             | 205.5    | 339.9    |  |  |
| ALCHOLE                                                          |                                                                                                                                                                                                                                                                                                                                          | Ase         | (in.²) | (0.114) | (0.213)  | (0.249)           | (0.319)  | (0.527)  |  |  |
| 8 5.8                                                            |                                                                                                                                                                                                                                                                                                                                          | Nsa         | kN     | 18.3    | 29.0     | 42.2              | 78.4     | 122.4    |  |  |
| Anchor ISO 898-1 Grade 5.8<br>with<br>Bolt: ISO 898-1 Grade 5.8  | 0                                                                                                                                                                                                                                                                                                                                        | IVsa        | (lb)   | (4,115) | (6,520)  | (9,475)           | (17,615) | (27,515) |  |  |
| Grac                                                             | 0                                                                                                                                                                                                                                                                                                                                        | Vsa         | kN     | 11.0    | 17.4     | 25.3              | 47.0     | 73.4     |  |  |
| 898-1<br>with<br>98-1 (                                          |                                                                                                                                                                                                                                                                                                                                          | V sa        | (lb)   | (2,470) | (3,910)  | (5,685)           | (10,570) | (16,510) |  |  |
| 8 O 8<br>0 89 0                                                  | Reduction for seismic shear                                                                                                                                                                                                                                                                                                              | αv,seis     | -      | -       |          | 1                 | 1.0      |          |  |  |
| nchor ISO 898-<br>with<br>Bolt: ISO 898-1                        | $\phi$ for tension <sup>2</sup>                                                                                                                                                                                                                                                                                                          | $\phi$      | -      |         |          | 0.65              | 0.65     |          |  |  |
| And<br>Bo                                                        | Strength reduction factor $\phi$ for shear <sup>2</sup>                                                                                                                                                                                                                                                                                  | $\phi$      | -      |         |          | 0.60              | 0.60     |          |  |  |
| 8<br>8.8<br>8                                                    | ,                                                                                                                                                                                                                                                                                                                                        | Nsa         | kN     | 29.3    | 46.4     | 67.4              | 107.9    | 178.4    |  |  |
| ade 8<br>e 8.                                                    |                                                                                                                                                                                                                                                                                                                                          |             | (lb)   | (6,580) | (10,430) | (15,160)          | (24,255) | (40,115) |  |  |
| 1 Grade<br>Grade 8.                                              | 0                                                                                                                                                                                                                                                                                                                                        | Vsa         | kN     | 17.6    | 27.8     | 40.5              | 75.2     | 117.5    |  |  |
| 98-1<br>8-1 (                                                    |                                                                                                                                                                                                                                                                                                                                          |             | (lb)   | (3,950) | (6,260)  | (9,095)           | (16,910) | (26,415) |  |  |
| 8 0 8 0<br>8 0 8 0                                               | Reduction for seismic shear                                                                                                                                                                                                                                                                                                              | lphaV, seis | -      | -       | 0.       | 90                |          | -        |  |  |
| Anchor: ISO 898-1 Grade 8.8<br>with<br>Bolt: ISO 898-1 Grade 8.8 |                                                                                                                                                                                                                                                                                                                                          | φ           | -      |         |          | 0.65              |          |          |  |  |
| Anct<br>Bo                                                       | Strength reduction factor $\phi$ for shear <sup>2</sup>                                                                                                                                                                                                                                                                                  | $\phi$      | -      |         |          | 0.60              |          |          |  |  |
|                                                                  | · ·                                                                                                                                                                                                                                                                                                                                      |             | kN     | 25.6    | 40.6     | 59.0              | 109.7    | 171.4    |  |  |
| 02 02                                                            | Nominal strength                                                                                                                                                                                                                                                                                                                         | Nsa         | (lb)   | (5,760) | (9,125)  | (13,265)          | (24,660) | (38,525) |  |  |
| 3olt<br>rade<br>ide 7                                            | by steel strength                                                                                                                                                                                                                                                                                                                        | Vsa         | kN     | 15.4    | 24.4     | 35.4              | 65.8     | 102.8    |  |  |
| or / E<br>1 Gra                                                  |                                                                                                                                                                                                                                                                                                                                          | V sa        | (lb)   | (3,455) | (5,475)  | (7,960)           | (14,795) | (23,115) |  |  |
| nchc<br>506-<br>1CR                                              | Reduction for seismic shear                                                                                                                                                                                                                                                                                                              | αv,seis     | -      | -       |          | 0.                | 90       |          |  |  |
| Anchor / Bolt<br>ISO 3506-1 Grade 70<br>and HCR Grade 70         | Strength reduction factor $\phi$ for tension <sup>2</sup>                                                                                                                                                                                                                                                                                | $\phi$      | -      |         |          | 0.65              |          |          |  |  |
|                                                                  | Strength reduction factor $\phi$ for shear <sup>2</sup>                                                                                                                                                                                                                                                                                  | $\phi$      | -      |         |          | 0.60              |          |          |  |  |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Values provided for fischer RG M I based on specified strength and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 or ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b, as applicable. Nuts and washers must be appropriated for the rod strength and type.

<sup>2</sup>For use with load combinations Section 1605.1 of the 2024 and 2021 IBC, Section 1605.2 of the 2018 and 2015 IBC, or ACI 318-19 and ACI 318-14 5.3, as applicable, as set forth in ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable. Values correspond to a brittle steel element.

#### TABLE 18—CONCRETE BREAKOUT DESIGN INFORMATION FOR RG M I INTERNAL THREADED (METRIC) ANCHOR

| DES                                        | IGN                                    |                  | 111170      |                     | Ancho   | r Metrical Thre   | ad Size    |         |  |  |  |  |
|--------------------------------------------|----------------------------------------|------------------|-------------|---------------------|---------|-------------------|------------|---------|--|--|--|--|
| INFORM                                     | IATION                                 | SYMBOL           | UNITS       | M8                  | M10     | M12               | M16        | M20     |  |  |  |  |
| Embedme                                    | ant donth                              | h <sub>ef</sub>  | mm          | 90                  | 90      | 125               | 160        | 200     |  |  |  |  |
| Embedine                                   | ent depth                              | Hef              | (in.)       | (3.54)              | (3.54)  | (4.92)            | (6.30)     | (7.87)  |  |  |  |  |
|                                            | Uncracked                              | Kc.uncr          | SI          |                     |         | 10                |            |         |  |  |  |  |
| Effectiveness                              | Concrete                               | <b>∧</b> c,uncr  | (in.lb)     | (24)                |         |                   |            |         |  |  |  |  |
| Factor                                     | Cracked Concrete                       | <b>K</b> c.cr    | SI          |                     |         | 7.1               |            |         |  |  |  |  |
|                                            | Clacked Colletete                      | <b>∧</b> c,cr    | (in.lb)     | (17)                |         |                   |            |         |  |  |  |  |
|                                            | Anchor spacing                         | S <sub>min</sub> | mm<br>(in.) | $s_{min} = c_{min}$ |         |                   |            |         |  |  |  |  |
| Minimun                                    |                                        |                  | mm          | 55                  | 65      | 75                | 95         | 125     |  |  |  |  |
| Value                                      | Edge Distance                          | Cmin             | (in.)       | (2.17)              | (2.56)  | (2.95)            | (3.74)     | (4.92)  |  |  |  |  |
|                                            | Member Thickness                       | h <sub>min</sub> | mm          | 120                 | 125     | 165               | 205        | 260     |  |  |  |  |
|                                            | Member Thickness                       | Timin            | (in.)       | (4.72)              | (4.92)  | (6.50)            | (8.07)     | (10.24) |  |  |  |  |
| Critical<br>Value                          | Edge Distance<br>for Splitting Failure | C <sub>ac</sub>  | mm<br>(in.) |                     | See Sec | tion 4.1.10 of th | nis report |         |  |  |  |  |
| Strength reduction<br>factor f, concrete   | Tension                                | $\phi$           | -           |                     |         | 0.65              |            |         |  |  |  |  |
| failure modes,<br>Condition B <sup>1</sup> | Shear                                  | $\phi$           | -           | 0.70                |         |                   |            |         |  |  |  |  |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

# TABLE 19—BOND STRENGTH DESIGN INFORMATION FOR RG M I INTERNAL THREADED (METRIC) ANCHOR IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT <sup>1, 2</sup>

|                                                                          |                                                              |              |                                         |                 |       |         | Anchor Me | trical Thread | l Size (mm) |         |
|--------------------------------------------------------------------------|--------------------------------------------------------------|--------------|-----------------------------------------|-----------------|-------|---------|-----------|---------------|-------------|---------|
|                                                                          | DESIGN INF                                                   | ORMATION     | N                                       | Symbol          | Units | 8       | 10        | 12            | 16          | 20      |
|                                                                          | Easter day                                                   |              |                                         |                 | mm    | 90      | 90        | 125           | 160         | 200     |
|                                                                          | Embedme                                                      | ent Depth    |                                         | h <sub>ef</sub> | (in.) | (3.54)  | (3.54)    | (4.92)        | (6.30)      | (7.87)  |
| th                                                                       |                                                              | ( <b>T</b>   | With Sustained                          | h Sustained     |       | 15.6    | 15.0      | 14.6          | 14.1        | 13.5    |
| reng<br>ete                                                              | Maximum Sho<br>Temperature = 16                              |              | Loads <sup>4</sup>                      |                 | (psi) | (2,265) | (2,170)   | (2,125)       | (2,040)     | (1,960) |
| d Sti                                                                    | Maximum Long Term<br>Temperature = 109°F (43°C) <sup>3</sup> |              | Short Term                              |                 | N/mm² | 19.5    | 18.7      | 18.3          | 17.6        | 16.9    |
| g Ci<br>B Di                                                             | Temperature - 10                                             | 9 F (43 C)   | Loads only⁵                             |                 | (psi) | (2,830) | (2,710)   | (2,655)       | (2,555)     | (2,450) |
| stic I<br>acke                                                           | Mariana                                                      |              | With Sustained                          | Tk,uncr         | N/mm² | 11.9    | 11.4      | 11.2          | 10.7        | 10.3    |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Maximum Sho<br>Temperature = 16                              |              | Loads <sup>4</sup>                      |                 | (psi) | (1,725) | (1,655)   | (1,620)       | (1,555)     | (1,495) |
| in U                                                                     | Maximum Lor<br>Temperature = 12                              | ng Term      | Short Term                              |                 | N/mm² | 19.5    | 18.7      | 18.3          | 17.6        | 16.9    |
| ප්                                                                       | Temperature - 12                                             | 2 F (50 C)   | Loads only <sup>5</sup>                 |                 | (psi) | (2,830) | (2,710)   | (2,655)       | (2,555)     | (2,450) |
| jt                                                                       | <u> </u>                                                     |              | With Sustained                          |                 | N/mm² | 9.5     | 9.3       | 9.1           | 9.0         | 9.0     |
| renç                                                                     | Maximum Sho<br>Temperature = 16                              | 2°F (72°C),  | Loads <sup>4</sup>                      |                 | (psi) | (1,380) | (1,345)   | (1,325)       | (1,310)     | (1,300) |
| d St<br>ncre                                                             | Maximum Long Term<br>Temperature = 109°F (43°C)              |              | 3 Short Term<br>Loads only <sup>5</sup> |                 | N/mm² | 11.9    | 11.6      | 11.4          | 11.3        | 11.2    |
| Bon                                                                      |                                                              |              |                                         | Tk,cr           | (psi) | (1,725) | (1,680)   | (1,655)       | (1,640)     | (1,625) |
| Characteristic Bond Strength<br>in Cracked Concrete                      |                                                              |              | With Sustained                          |                 | N/mm² | 7.3     | 7.1       | 7.0           | 6.9         | 6.8     |
| cteri                                                                    | Maximum Sho<br>Temperature = 16                              | nort i erm   |                                         |                 | (psi) | (1,055) | (1,025)   | (1,010)       | (1,000)     | (990)   |
| in<br>in                                                                 | Maximum Lor<br>Temperature = 12                              |              | Short Term                              |                 | N/mm² | 11.9    | 11.6      | 11.4          | 11.3        | 11.2    |
| ð                                                                        |                                                              | 2 F (50 C)   | Loads only⁵                             |                 | (psi) | (1,725) | (1,680)   | (1,655)       | (1,640)     | (1,625) |
| I                                                                        | Reduction Factor fo                                          | or Seismic T | ension                                  | αN,seis         | -     | -       | 0.94      | 0.93          | 0.91        | 0.88    |
| S                                                                        | Dry Holes                                                    | Continuo     | us Inspection                           | 4               | -     | 0.      | 65        |               | 0.55        |         |
| acto<br>ons                                                              | in Concrete                                                  | Periodi      | c Inspection                            | $\phi_{ m d}$   | -     | 0.      | 65        |               | 0.55        |         |
| ength Reduction Facto<br>for Permissible<br>Installation Conditions      | Water Saturated<br>Holes                                     | Continuo     | us Inspection                           | 4               | -     |         |           | 0.65          |             |         |
| uctic<br>niss<br>Cor                                                     | in Concrete                                                  | Periodi      | c Inspection                            | $\phi_{ws}$     | -     |         |           | 0.65          |             |         |
| th Reduction Fi<br>or Permissible<br>allation Conditi                    | Water-filled<br>Holes                                        | Continuo     | us Inspection                           | 4               | -     |         |           | 0.45          |             |         |
| gth F<br>for<br>talla                                                    | in Concrete                                                  | Periodi      | c Inspection                            | $\phi_{wf}$     | -     |         |           | 0.45          |             |         |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | Underwater<br>Installation                                   | Continuo     | us Inspection                           | ¢               | -     |         |           | 0.55          |             |         |
| •••                                                                      | in Concrete                                                  | Periodi      | c Inspection                            | $\phi_{uw}$     | -     | 0.55    |           |               |             |         |
| Modifi-<br>cation<br>Factors                                             | Water-filled<br>Holes                                        | Continuo     | us Inspection                           | Kwf             | -     | 0.      | 92        | 0.91          | 0.89        | 0.85    |
| Mo<br>cat<br>Fac                                                         | in Concrete                                                  | Periodi      | c Inspection                            | Λwf             | -     | 0.86    | 0.83      | 0.82          | 0.80        | 0.77    |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

#### TABLE 20—BOND STRENGTH DESIGN INFORMATION FOR RG M I INTERNAL THREADED (METRIC) ANCHOR IN HOLES DRILLED WITH A DIAMOND CORE BIT <sup>1, 2</sup>

|                                                                          |                                                |              |                         |                 |       |           | Anchor Met | ic Thread Dia | ameter (mm) |         |
|--------------------------------------------------------------------------|------------------------------------------------|--------------|-------------------------|-----------------|-------|-----------|------------|---------------|-------------|---------|
|                                                                          | DESIGN INF                                     | ORMATION     | N                       | Symbol          | Units | 8         | 10         | 12            | 16          | 20      |
|                                                                          | <b>F</b> uch a due                             |              |                         | 4               | mm    | 90        | 90         | 125           | 160         | 200     |
|                                                                          | Embedme                                        | ent Depth    |                         | h <sub>ef</sub> | (in.) | (3.54)    | (3.54)     | (4.92)        | (6.30)      | (7.87)  |
| jt                                                                       | Mauringung Cha                                 |              | With Sustained          |                 | N/mm² | 10.6      | 9.8        | 9.4           | 8.9         | 8.2     |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Maximum Sho<br>Temperature = 16                |              | Loads <sup>4</sup>      |                 | (psi) | (1,545)   | (1,425)    | (1,370)       | (1,290)     | (1,195) |
| d Sti<br>oncr                                                            | Maximum Lor                                    |              | Short Term              |                 | N/mm² | 13.3      | 12.3       | 11.8          | 11.1        | 10.3    |
| aracteristic Bond Streng<br>in Uncracked Concrete                        | Temperature = 109°F (43°C)                     |              | Loads only <sup>5</sup> |                 | (psi) | (1,930)   | (1,785)    | (1,710)       | (1,610)     | (1,495) |
| stic  <br>acke                                                           | Mauinaum Cha                                   |              | With Sustained          | Tk,uncr         | N/mm² | 8.1       | 7.5        | 7.2           | 6.8         | 6.3     |
| cteris                                                                   | Maximum Sho<br>Temperature = 16                |              | Loads <sup>4</sup>      |                 | (psi) | (1,175)   | (1,090)    | (1,045)       | (980)       | (910)   |
| iara(<br>in U                                                            | Maximum Lor<br>Temperature = 12                |              | Short Term              |                 | N/mm² | 13.3      | 12.3       | 11.8          | 11.1        | 10.3    |
| ප්                                                                       | Temperature - 12                               | 2 F (50 C)   | Loads only <sup>5</sup> |                 | (psi) | (1,930)   | (1,785)    | (1,710)       | (1,610)     | (1,495) |
| gth                                                                      | Mauringung Cha                                 |              | With Sustained          |                 | N/mm² | 6.6       | 6.7        | 6.9           | 6.6         | 6.5     |
| reng                                                                     | Maximum Sho<br>Temperature = 16                |              | Loads <sup>4</sup>      |                 | (psi) | (965)     | (975)      | (1,000)       | (965)       | (940)   |
| Characteristic Bond Strength<br>in Cracked Concrete                      | Maximum Lor<br>Temperature = 10                |              | Short Term              |                 | N/mm² | 8.3       | 8.4        | 8.6           | 8.3         | 8.1     |
| Co                                                                       |                                                | 9 F (43 C)   | Loads only⁵             | _               | (psi) | (1,205)   | (1,220)    | (1,245)       | (1,205)     | (1,175) |
| stic I<br>cked                                                           |                                                |              | With Sustained          | Tk,cr           | N/mm² | 5.1       | 5.1        | 5.2           | 5.1         | 4.9     |
| crac                                                                     | Maximum Sho<br>Temperature = 16                |              | Loads <sup>4</sup>      |                 | (psi) | (735)     | (745)      | (760)         | (735)       | (715)   |
| in<br>in                                                                 | Maximum Long Term<br>Temperature = 122°F (50°C |              | Chart Tarm              |                 | N/mm² | 8.3       | 8.4        | 8.6           | 8.3         | 8.1     |
| 5<br>C                                                                   |                                                | 2 F (50 C)   | Loads only⁵             |                 | (psi) | (1,205)   | (1,220)    | (1,245)       | (1,205)     | (1,175) |
|                                                                          | Reduction Factor fo                            | or Seismic T | ension                  | αN,seis         | -     | -         | 0.94       | 0.93          | 0.91        | 0.88    |
| S                                                                        | Dry Holes                                      | Continuo     | us Inspection           | 4               | -     |           | 0.65       |               | 0.55        | 0.45    |
| acto                                                                     | in Concrete                                    | Periodi      | c Inspection            | $\phi_{ m d}$   | -     |           | 0.65       |               | 0.55        | 0.45    |
| n Fa<br>ible<br>nditio                                                   | Water Saturated<br>Holes                       | Continuo     | us Inspection           | 4               | -     |           |            | 0.65          |             |         |
| uctio<br>nissi<br>Cor                                                    | in Concrete                                    | Periodi      | c Inspection            | $\phi_{ws}$     | -     |           | 0.65       |               | 0.55        | 0.45    |
| th Reduction F<br>or Permissible<br>allation Conditi                     | Water-filled<br>Holes                          | Continuo     | us Inspection           | 4               | -     |           |            | 0.45          |             |         |
| gth F<br>for<br>talla                                                    | in Concrete                                    | Periodi      | c Inspection            | $\phi_{wf}$     | -     |           |            | 0.45          |             |         |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | Underwater                                     | Continuo     | us Inspection           | 4               | -     | 0.45      |            | 0.            | 55          |         |
|                                                                          | Installation<br>in Concrete                    | Periodi      | c Inspection            | $\phi_{uw}$     | -     | 0.45 0.55 |            |               |             |         |
| Modifi-<br>cation<br>Factors                                             | Water-filled<br>Holes                          | Continuo     | us Inspection           | ν.              | -     | 0.95      |            | 1             | .0          |         |
| Mo<br>cat<br>Fac                                                         | in Concrete                                    | Periodi      | c Inspection            | $K_{wf}$        | -     | 0.94      | 0.95       | 0.9           | 97          | 0.95    |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

# TABLE 21—BOND STRENGTH DESIGN INFORMATION FOR RG M I INTERNAL THREADED (METRIC) ANCHOR IN HOLES DRILLED WITH A HAMMER DRILL AND HOLLOW DRILL BIT <sup>1, 2</sup>

|                                                                          |                                 |                     |                          |                 |       |           | Anchor Me | trical Thread | Size (mm) |         |
|--------------------------------------------------------------------------|---------------------------------|---------------------|--------------------------|-----------------|-------|-----------|-----------|---------------|-----------|---------|
|                                                                          | DESIGN INF                      | ORMATION            | 1                        | Symbol          | Units | 8         | 10        | 12            | 16        | 20      |
|                                                                          | Easter day                      |                     |                          |                 | mm    | 90        | 90        | 125           | 160       | 200     |
|                                                                          | Embedme                         | ent Depth           |                          | h <sub>ef</sub> | (in.) | (3.54)    | (3.54)    | (4.92)        | (6.30)    | (7.87)  |
| Ith                                                                      | Mariana                         |                     | With Sustained           |                 | N/mm² | 14.8      | 13.8      | 13.4          | 12.8      | 12.1    |
| reng<br>ete                                                              | Maximum Sho<br>Temperature = 16 |                     | Loads <sup>4</sup>       |                 | (psi) | (2,145)   | (2,005)   | (1,950)       | (1,855)   | (1,750) |
| d Sti<br>oncr                                                            | Maximum Lon                     |                     | Short Term               |                 | N/mm² | 18.5      | 17.3      | 16.8          | 16.0      | 15.1    |
| Bon                                                                      | Temperature = 109°F (43°C)      |                     | Loads only⁵              | _               | (psi) | (2,685)   | (2,510)   | (2,435)       | (2,320)   | (2,190) |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Mauimum Cha                     |                     | With Sustained           | Tk,uncr         | N/mm² | 11.3      | 10.6      | 10.2          | 9.8       | 9.2     |
|                                                                          | Maximum Sho<br>Temperature = 16 |                     | Loads <sup>4</sup>       |                 | (psi) | (1,635)   | (1,530)   | (1,485)       | (1,415)   | (1,335) |
| iarao<br>in U                                                            | Maximum Lon<br>Temperature = 12 |                     | Short Term               |                 | N/mm² | 18.5      | 17.3      | 16.8          | 16.0      | 15.1    |
| ы                                                                        | Temperature – 12                | 2 F (50 C)          | Loads only <sup>5</sup>  |                 | (psi) | (2,685)   | (2,510)   | (2,435)       | (2,320)   | (2,190) |
| lth                                                                      | Mauimum Cha                     |                     | With Sustained           |                 | N/mm² | 9.1       | 9.0       | 8.9           | 8.8       | 8.8     |
| Characteristic Bond Strength<br>in Cracked Concrete                      | Maximum Sho<br>Temperature = 16 |                     | Loads <sup>4</sup>       |                 | (psi) | (1,325)   | (1,310)   | (1,290)       | (1,275)   | (1,275) |
| racteristic Bond Strer<br>in Cracked Concrete                            | Maximum Lon                     |                     | Short Term               |                 | N/mm² | 11.4      | 11.3      | 11.1          | 11.0      | 11.0    |
| Bon                                                                      | Temperature = 109°F (43°C)      |                     | Loads only <sup>5</sup>  | _               | (psi) | (1,655)   | (1,640)   | (1,610)       | (1,595)   | (1,595) |
| stic<br>ckec                                                             | Maximum Sho                     | ut Tarma            | With Sustained<br>Loads⁴ | Tk,cr           | N/mm² | 7.0       | 6.9       | 6.8           | 6.7       | 6.7     |
| cteri<br>Cra                                                             | Temperature = 16                | 2°F (72°C),         |                          |                 | (psi) | (1,010)   | (1,000)   | (980)         | (975)     | (975)   |
| lara<br>in                                                               | Maximum Lon<br>Temperature = 12 |                     | Short Term               |                 | N/mm² | 11.4      | 11.3      | 11.1          | 11.0      | 11.0    |
| Ċ                                                                        |                                 | 2 F (30 C)          | Loads only⁵              |                 | (psi) | (1,655)   | (1,640)   | (1,610)       | (1,595)   | (1,595) |
| F                                                                        | Reduction Factor fo             | or Seismic T        | ension                   | <i>α</i> N,seis | -     | -         | 0.94      | 0.93          | 0.91      | 0.88    |
| actors<br>ons                                                            | Dry Holes                       | Continuo            | us Inspection            | Øа              | -     |           | 0.        | 65            |           | 0.55    |
| uction F<br>rissible<br>Conditi                                          | in Concrete                     | Periodio            | Periodic Inspection      |                 | -     | 0.65 0.55 |           |               |           |         |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | Water Saturated                 | Continuo            | ntinuous Inspection      |                 | -     |           |           | 0.65          |           |         |
|                                                                          | Holes<br>in Concrete            | Periodic Inspection |                          | Øws             | -     | 0.65      |           |               |           |         |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

| TABLE 22—STEEL | DESIGN INFORMATION FOR FRACTIONA | L THREADED ROD <sup>1</sup> |
|----------------|----------------------------------|-----------------------------|
|                |                                  |                             |

|                                             | DESIGN                                                     |                 |        |                             |                             | Nor             | ninal rod o                 | liameter (i     | nch)    |                               |                               |
|---------------------------------------------|------------------------------------------------------------|-----------------|--------|-----------------------------|-----------------------------|-----------------|-----------------------------|-----------------|---------|-------------------------------|-------------------------------|
|                                             | INFORMATION                                                | Symbol          | Units  | <sup>3</sup> /8             | <sup>1</sup> / <sub>2</sub> | <sup>5</sup> /8 | <sup>3</sup> / <sub>4</sub> | 7/ <sub>8</sub> | 1       | 1 <sup>1</sup> / <sub>8</sub> | 1 <sup>1</sup> / <sub>4</sub> |
| _                                           |                                                            | ,               | in.    | <sup>3</sup> / <sub>8</sub> | <sup>1</sup> / <sub>2</sub> | <sup>5</sup> /8 | <sup>3</sup> / <sub>4</sub> | 7/ <sub>8</sub> | 1       | 1 <sup>1</sup> / <sub>8</sub> | 1 <sup>1</sup> / <sub>4</sub> |
|                                             | Rod Outside Diameter                                       | da              | (mm)   | (9.5)                       | (12.7)                      | (15.9)          | (19.1)                      | (22.2)          | (25.4)  | (28.6)                        | (31.8)                        |
| Ded of                                      | factive cross castional cros                               | 4               | ln.²   | 0.0775                      | 0.1418                      | 0.2260          | 0.3345                      | 0.4617          | 0.6057  | 0.7626                        | 0.9691                        |
| Rodel                                       | fective cross-sectional area                               | A <sub>se</sub> | (mm²)  | (50.0)                      | (91.5)                      | (145.8)         | (215.8)                     | (297.9)         | (390.8) | (492.0)                       | (625.2)                       |
| ~                                           |                                                            | N <sub>sa</sub> | lb     | 5,620                       | 10,285                      | 16,390          | 24,255                      | 33,485          | 43,930  | 55,305                        | 70,275                        |
| s 5.8<br>5.8                                | Nominal strength<br>as governed                            | TVsa            | (kN)   | (25.0)                      | (45.8)                      | (72.9)          | (107.9)                     | (149.0)         | (195.4) | (246.0)                       | (312.6)                       |
| rade<br>ade                                 | by steel strength                                          | Vsa             | lb     | 3,370                       | 6,170                       | 9,835           | 14,555                      | 20,090          | 26,355  | 33,180                        | 42,165                        |
| Z <sup>2</sup> 02                           |                                                            | v sa            | (kN)   | (15.0)                      | (27.5)                      | (43.7)          | (64.7)                      | (89.4)          | (117.2) | (147.6)                       | (187.6)                       |
| -568<br>398-`                               | Reduction for seismic shear                                | αv,seis         | -      |                             | 0.                          | .74             |                             |                 | 0.0     | 60                            |                               |
| ASTM F568M Grade 5.8<br>ISO 898-1 Grade 5.8 | Strength reduction factor $\phi$ for tension <sup>2</sup>  | $\phi$          | -      |                             |                             |                 | 0.                          | 65              |         |                               |                               |
| AS                                          | Strength reduction factor $\phi$ for shear <sup>2</sup>    | $\phi$          | -      |                             |                             |                 | 0.                          | 60              |         |                               |                               |
|                                             |                                                            |                 | lb     | 4,495                       | 8,230                       | 13,110          | 19,405                      | 26,790          | 35,140  | 44,240                        | 56,220                        |
| 36 /                                        | Nominal strength                                           | N <sub>sa</sub> | (kN)   | (20.0)                      | (36.6)                      | (58.3)          | (86.3)                      | (119.2)         | (156.3) | (196.8)                       | (250.1)                       |
| ade :<br>le 36                              | as governed<br>by steel strength                           | Vsa             | lb     | 2,700                       | 4,935                       | 7,865           | 11,645                      | 16,075          | 21,085  | 26,545                        | 33,730                        |
| s Gra<br>Grac                               |                                                            |                 | (kN)   | (12.0)                      | (22.0)                      | (35.0)          | (51.8)                      | (71.5)          | (93.8)  | (118.1)                       | (150.0)                       |
| A36<br>554 (                                | Reduction for seismic shear                                | ∕XV,seis        | -      | 0,74                        |                             |                 |                             |                 | 0.0     | 60                            |                               |
| ASTM A36 Grade 36.<br>F1554 Grade 36        | Strength reduction factor $\phi$ for tension <sup>3</sup>  | $\phi$          | - 0.75 |                             |                             |                 | 75                          |                 |         |                               |                               |
|                                             | Strength reduction factor $\phi$ for shear <sup>3</sup>    | $\phi$          | -      | 0.65                        |                             |                 |                             |                 |         |                               |                               |
|                                             |                                                            | N <sub>sa</sub> | lb     | 5,810                       | 10,635                      | 16,945          | 25,080                      | 34,625          | 45,420  | 57,185                        | 72,665                        |
| 10                                          | Nominal strength<br>as governed                            | INsa            | (kN)   | (25.9)                      | (47.3)                      | (75.4)          | (111.6)                     | (154.0)         | (202.0) | (254.4)                       | (323.2)                       |
| le 55                                       | by steel strength                                          | Vsa             | lb     | 3,485                       | 6,380                       | 10,165          | 15,050                      | 20,775          | 27,255  | 34,310                        | 43,600                        |
| Grade                                       |                                                            | V sa            | (kN)   | (15.5)                      | (28.4)                      | (45.2)          | (66.9)                      | (92.4)          | (121.2) | (152.6)                       | (193.9)                       |
| F1554 (                                     | Reduction for seismic shear                                | αv,seis         | -      |                             | 0.                          | .74             |                             |                 | 0.0     | 60                            |                               |
| Ц                                           | Strength reduction factor $\phi$ for tension <sup>3</sup>  | $\phi$          | -      |                             |                             |                 | 0.                          | 75              |         |                               |                               |
|                                             | Strength reduction factor<br>$\phi$ for shear <sup>3</sup> | φ               | -      |                             |                             |                 | 0.                          | 65              |         |                               |                               |
|                                             |                                                            |                 | lb     | 9,665                       | 17,690                      | 28,190          | 41,720                      | 57,595          | 75,555  | 95,120                        | 120,875                       |
| 105                                         | Nominal strength                                           | N <sub>sa</sub> | (kN)   | (43.0)                      | (78.7)                      | (125.4)         | (185.6)                     | (256.2)         | (336.1) | (423.1)                       | (537.7)                       |
| ASTM A193 B7<br>ASTM F1554 Grade105         | as governed<br>by steel strength                           | N               | lb     | 5,800                       | 10,615                      | 16,915          | 25,035                      | 34,555          | 45,335  | 57,075                        | 72,525                        |
|                                             |                                                            | Vsa             | (kN)   | (25.8)                      | (47.2)                      | (75.2)          | (111.4)                     | (153.7)         | (201.7) | (253.9)                       | (322.6)                       |
| F155                                        | Reduction for seismic shear                                | αV,seis         | -      |                             | 0.                          | .74             |                             | 0.60            |         |                               |                               |
| AS                                          | Strength reduction factor $\phi$ for tension <sup>2</sup>  | φ               | -      |                             |                             |                 | 0.                          | 0.65            |         |                               |                               |
| Ă                                           | Strength reduction factor $\phi$ for shear <sup>2</sup>    | φ               | -      |                             |                             |                 | 0.                          | 60              |         |                               |                               |

#### TABLE 22—STEEL DESIGN INFORMATION FOR FRACTIONAL THREADED ROD<sup>1</sup> (Continued)

|                                      | DESIGN                                                    |                     | I Units |                 |                             |                 |                             |                 |         |                                                                                                                                                                                                                                               |                                      |  |  |  |
|--------------------------------------|-----------------------------------------------------------|---------------------|---------|-----------------|-----------------------------|-----------------|-----------------------------|-----------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|
|                                      | INFORMATION                                               | Symbol              | Units   | <sup>3</sup> /8 | <sup>1</sup> / <sub>2</sub> | <sup>5</sup> /8 | <sup>3</sup> / <sub>4</sub> | <sup>7</sup> /8 | 1       | 64,815<br>(288.3)<br>38,890<br>(173.0)                                                                                                                                                                                                        | <b>1</b> <sup>1</sup> / <sub>4</sub> |  |  |  |
| F593, CW Stainless ASTM A19<br>Grade |                                                           |                     | lb      | 7,360           | 13,475                      | 21,470          | 31,775                      | 43,865          | 57,545  | 72,445                                                                                                                                                                                                                                        | 92,060                               |  |  |  |
|                                      | Nominal strength                                          | Nsa                 | (kN)    | (32.8)          | (59.9)                      | (95.5)          | (141.3)                     | (195.1)         | (256.0) | (322.3)                                                                                                                                                                                                                                       | (409.5)                              |  |  |  |
| e B8<br>inle;                        | as governed<br>by steel strength                          | N                   | lb      | 4,415           | 8,085                       | 12,880          | 19,065                      | 26,320          | 34,525  | 5       72,445       92         0)       (322.3)       (40         5       43,470       55         30)       (193.4)       (24         0.60       35       64,815       82         0)       (288.3)       (3         00       38,890       45 | 55,235                               |  |  |  |
|                                      |                                                           | V <sub>sa</sub>     | (kN)    | (19.7)          | (36.0)                      | (57.3)          | (84.8)                      | (117.1)         | (153.6) |                                                                                                                                                                                                                                               | (245.7)                              |  |  |  |
|                                      | Reduction for seismic shear                               | α <sub>V,seis</sub> | -       | 0.74 0.60       |                             |                 |                             |                 |         |                                                                                                                                                                                                                                               |                                      |  |  |  |
| M A1<br>Grad                         | Strength reduction factor $\phi$ for tension <sup>3</sup> | φ                   | -       |                 | 0.75                        |                 |                             |                 |         |                                                                                                                                                                                                                                               |                                      |  |  |  |
| AST                                  | Strength reduction factor $\phi$ for shear <sup>3</sup>   | φ                   | -       | 0.65            |                             |                 |                             |                 |         |                                                                                                                                                                                                                                               |                                      |  |  |  |
| s                                    |                                                           | Nsa                 | lb      | 6,585           | 12,055                      | 19,205          | 28,430                      | 39,245          | 51,485  | 64,815                                                                                                                                                                                                                                        | 82,365                               |  |  |  |
| inles                                | Nominal strength                                          |                     | (kN)    | (29.3)          | (53.6)                      | (85.4)          | (126.5)                     | (174.6)         | (229.0) | (288.3)                                                                                                                                                                                                                                       | (366.4)                              |  |  |  |
| Sta                                  | as governed<br>by steel strength                          | V                   | lb      | 3,950           | 7,230                       | 11,525          | 17,055                      | 23,545          | 30,890  | 38,890                                                                                                                                                                                                                                        | 49,420                               |  |  |  |
| CM                                   |                                                           | Vsa                 | (kN)    | (17.6)          | (32.2)                      | (51.3)          | (75.9)                      | (104.7)         | (137.4) | (173.0)                                                                                                                                                                                                                                       | (219.8)                              |  |  |  |
| 593,                                 | Reduction for seismic shear                               | α <sub>V,seis</sub> | -       |                 | 0.                          | 74              |                             | 0.60            |         |                                                                                                                                                                                                                                               |                                      |  |  |  |
| ASTM F                               | Strength reduction factor $\phi$ for tension <sup>2</sup> | φ                   | -       |                 | 0.65                        |                 |                             |                 |         |                                                                                                                                                                                                                                               |                                      |  |  |  |
| AS                                   | Strength reduction factor $\phi$ for shear <sup>2</sup>   | φ                   | -       |                 |                             |                 | 0.0                         | 60              |         |                                                                                                                                                                                                                                               |                                      |  |  |  |

For **SI:** 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi.

<sup>1</sup>Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 or ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b, as applicable. Nuts and washers must be appropriate for the rod strength and type.

<sup>2</sup>For use with load combinations Section 1605.1 of the 2024 and 2021 IBC, Section 1605.2 of the 2018 and 2015 IBC, or ACI 318-19 and ACI 318-14 5.3, as applicable, as set forth in ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable. Values correspond to a brittle steel element.
<sup>3</sup>For use with load combinations Section 1605.1 of the 2024 and 2021 IBC, Section 1605.2 of the 2018 and 2015 IBC, or ACI 318-19 and ACI 318-14 5.3, as applicable, as set forth in ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable. Values correspond to a brittle steel element.
<sup>3</sup>For use with load combinations Section 1605.1 of the 2024 and 2021 IBC, Section 1605.2 of the 2018 and 2015 IBC, or ACI 318-19 and ACI 318-14 5.3, as applicable, as set forth in ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable. Values correspond to a ductile steel element.

| DES       | SIGN                                      |                     |             |                                     |                               | Nomi                                                  | nal rod dia     | ameter (inc                    | ch)    |                                                                                                                                                                   |                                      |  |  |
|-----------|-------------------------------------------|---------------------|-------------|-------------------------------------|-------------------------------|-------------------------------------------------------|-----------------|--------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|
|           | MATION                                    | Symbol              | Units       | <sup>3</sup> /8                     | <sup>1</sup> / <sub>2</sub>   | <sup>5</sup> /8                                       | <sup>3</sup> /4 | 7/8                            | ,<br>1 | 1 <sup>1</sup> / <sub>8</sub> 4 <sup>1</sup> / <sub>2</sub> (114)         22 <sup>1</sup> / <sub>2</sub> (572)                                                    | <b>1</b> <sup>1</sup> / <sub>4</sub> |  |  |
|           |                                           | ,                   | in.         | 2 <sup>3</sup> /8                   | 2 <sup>3</sup> / <sub>4</sub> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 5               |                                |        |                                                                                                                                                                   |                                      |  |  |
| Embedment | Minimum                                   | h <sub>ef,min</sub> | (mm)        | (60)                                | (70)                          | (79)                                                  | (89)            | (89)                           | (102)  | 4 <sup>1</sup> / <sub>2</sub><br>(114)<br>22 <sup>1</sup> / <sub>2</sub><br>(572)<br>5.31                                                                         | (127)                                |  |  |
| Depth     | Maria                                     | L.                  | in.         | 7 <sup>1</sup> / <sub>2</sub>       | 10                            | 12 <sup>1</sup> / <sub>2</sub>                        | 15              | 17 <sup>1</sup> / <sub>2</sub> | 20     | 22 <sup>1</sup> / <sub>2</sub>                                                                                                                                    | 25                                   |  |  |
|           | Maximum                                   | h <sub>ef,max</sub> | (mm)        | (191)                               | (254)                         | (318)                                                 | (381)           | (435)                          | (508)  | 4 <sup>1</sup> / <sub>2</sub><br>(114)<br>22 <sup>1</sup> / <sub>2</sub><br>(572)<br>5.31                                                                         | (635)                                |  |  |
|           | Uncracked                                 | 1.                  | in.lb       |                                     |                               |                                                       | 24              |                                |        |                                                                                                                                                                   | •                                    |  |  |
| Embedment | Concrete                                  | K <sub>c,uncr</sub> | (SI)        |                                     | (10)                          |                                                       |                 |                                |        |                                                                                                                                                                   |                                      |  |  |
| Factor    | Cracked                                   | k                   | in.lb       | 17                                  |                               |                                                       |                 |                                |        |                                                                                                                                                                   |                                      |  |  |
|           | Concrete                                  | K <sub>c,cr</sub>   | (SI)        |                                     |                               |                                                       | (7.1            | )                              |        | $\begin{array}{c cccc} 4^{1}/_{2} & 5 \\ (114) & (127) \\ 22^{1}/_{2} & 25 \\ (572) & (635) \\ \end{array}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                      |  |  |
|           | Anchor<br>Spacing                         | S <sub>min</sub>    | in.<br>(mm) | s <sub>min</sub> = c <sub>min</sub> |                               |                                                       |                 |                                |        |                                                                                                                                                                   |                                      |  |  |
| Minimum   | Edua Distance                             | _                   | in.         | 1.67                                | 2.26                          | 2.56                                                  | 3.15            | 3.74                           | 4.33   | 5.31                                                                                                                                                              | 6.30                                 |  |  |
|           | Edge Distance                             | Cmin                | (mm)        | (42.5)                              | (57.5)                        | (65)                                                  | (80)            | (95)                           | (110)  | (135)                                                                                                                                                             | (160)                                |  |  |
|           | Member                                    | h <sub>min</sub>    | in.         | h <sub>ef</sub> + 1.2               | 5 (≥ 4.0)                     | h. + 2d. <sup>1</sup>                                 |                 |                                |        |                                                                                                                                                                   |                                      |  |  |
|           | Thickness                                 | l I min             | (mm)        | $(h_{ef} + 30 \geq 100))$           |                               |                                                       |                 |                                |        |                                                                                                                                                                   |                                      |  |  |
| -         | Edge Distance<br>for Splitting<br>Failure | C <sub>ac</sub>     | in.<br>(mm) | See Section 4.1.10 of this report   |                               |                                                       |                 |                                |        |                                                                                                                                                                   |                                      |  |  |
| reduction | Tension                                   | φ                   | -           |                                     |                               |                                                       | 0.65            | 5                              |        |                                                                                                                                                                   |                                      |  |  |
|           | Shear                                     | φ                   | -           |                                     |                               |                                                       | 0.70            | )                              |        |                                                                                                                                                                   |                                      |  |  |

#### TABLE 23—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD

For **SI:** 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi.

 $^{1}$  d<sub>0</sub> = drill hole diameter

<sup>2</sup>The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

**ICC-ES**<sup>®</sup> Most Widely Accepted and Trusted

 TABLE 24—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD

 IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT <sup>1,2</sup>

|                                                       |                                                  |              | _                        |                     |                               |                               |                                | Thread                        | ed Rod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rod Diameter (inch)           |                                |                                      |        |
|-------------------------------------------------------|--------------------------------------------------|--------------|--------------------------|---------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|--------------------------------------|--------|
| DESIGN INFORMATION                                    |                                                  |              | Symbol                   | Units               | <sup>3</sup> / <sub>8</sub>   | <sup>1</sup> / <sub>2</sub>   | <sup>5</sup> / <sub>8</sub>    | <sup>3</sup> / <sub>4</sub>   | 7/ <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                             | 1 <sup>1</sup> / <sub>8</sub>  | <b>1</b> <sup>1</sup> / <sub>4</sub> |        |
|                                                       | Minimum Emp                                      | admant Day   | a th                     | h                   | in.                           | 2 <sup>3</sup> / <sub>8</sub> | 2 <sup>3</sup> / <sub>4</sub>  | 3 <sup>1</sup> / <sub>8</sub> | 3 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 <sup>1</sup> / <sub>2</sub> | 4                              | 4 <sup>1</sup> / <sub>2</sub>        | 5      |
|                                                       | Minimum Emb                                      | eament Dep   | วเท                      | h <sub>ef,min</sub> | (mm)                          | (60)                          | (70)                           | (79)                          | (89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (89)                          | (102)                          | (114)                                | (127)  |
| Maximum Embedment Depth                               |                                                  |              | 4-                       | in.                 | 7 <sup>1</sup> / <sub>2</sub> | 10                            | 12 <sup>1</sup> / <sub>2</sub> | 15                            | 17 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                            | 22 <sup>1</sup> / <sub>2</sub> | 25                                   |        |
|                                                       |                                                  |              | h <sub>ef,max</sub>      | (mm)                | (191)                         | (254)                         | (318)                          | (381)                         | (445)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (508)                         | (572)                          | (635)                                |        |
| ţ                                                     |                                                  |              | With Sustained           |                     | psi                           | 2,365                         | 2,265                          | 2,170                         | 2,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,040                         | 1,995                          | 1,960                                | 1,925  |
| reng<br>ete                                           | Maximum Sho<br>Temperature = 16                  |              | Loads <sup>4</sup>       |                     | (N/mm²)                       | (16.3)                        | (15.6)                         | (15.0)                        | (14.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (14.1)                        | (13.8)                         | (13.5)                               | (13.3) |
| aracteristic Bond Strenç<br>in Uncracked Concrete     | Maximum Lor                                      | ig Term      | Short Term               |                     | psi                           | 2,960                         | 2,830                          | 2,710                         | 2,625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,555                         | 2,495                          | 2,450                                | 2,410  |
| d Cc                                                  | Temperature = 10                                 | 9 F (43 C)°  | Loads only <sup>5</sup>  |                     | (N/mm²)                       | (20.4)                        | (19.5)                         | (18.7)                        | (89)(89)(102)(114)(127) $4_2$ 15 $17^{1}/_2$ 20 $22^{1}/_2$ 25(381)(445)(508)(572)(635)702,1002,0401,9951,9601,9250)(14.5)(14.1)(13.8)(13.5)(13.3)102,6252,5552,4952,4502,4107)(18.1)(17.6)(17.2)(16.9)(16.6)551,6001,5551,5201,4951,4704)(11.0)(10.7)(10.5)(10.3)(10.1)102,6252,5552,4952,4502,4107)(18.1)(17.6)(17.2)(16.9)(16.6)351,3251,3101,3001,3001,30020(9.1)(9.0)(9.0)(9.0)(9.0)701,6551,6401,6251,6251,6255)(11.4)(11.3)(11.2)(11.2)(11.2)151,0101,0009909909900)(7.0)(6.9)(6.8)(6.8)(6.8)701,6551,6401,6251,6251,6255)(11.4)(11.3)(11.2)(11.2)(11.2)40.930.910.900.880.870.550.6550.550.550.550.55 |                               |                                |                                      |        |
| stic I<br>acke                                        |                                                  |              | With Sustained           | Tk,uncr             | psi                           | 1,805                         | 1,725                          | 1,655                         | 1,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,555                         | 1,520                          | 1,495                                | 1,470  |
| steris                                                | Maximum Sho<br>Temperature = 16                  |              | Loads <sup>4</sup>       |                     | (N/mm²)                       | (12.4)                        | (11.9)                         | (11.4)                        | (11.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (10.7)                        | (10.5)                         | (10.3)                               | (10.1) |
| Characteristic Bond Strength<br>in Uncracked Concrete | Maximum Long Term<br>Temperature = 122°F (50°C   |              | Short Term               |                     | psi                           | 2,960                         | 2,830                          | 2,710                         | 2,625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,555                         | 2,495                          | 2,450                                | 2,410  |
|                                                       |                                                  |              | Loads only⁵              |                     | (N/mm²)                       | (20.4)                        | (19.5)                         | (18.7)                        | (18.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (17.6)                        | (17.2)                         | (16.9)                               | (16.6) |
| ţ                                                     |                                                  |              | With Sustained           |                     | psi                           | 1,415                         | 1,370                          | 1,335                         | 1,325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,310                         | 1,300                          | 1,300                                | 1,300  |
| reng<br>te                                            | Maximum Sho<br>Temperature = 16                  |              | Loads <sup>4</sup>       |                     | (N/mm²)                       | (9.8)                         | (9.4)                          | (9.2)                         | (9.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (9.0)                         | (9.0)                          | (9.0)                                | (9.0)  |
| Bond Str<br>Concret                                   | Maximum Lor                                      | ıg Term      | Short Term               |                     | psi                           | 1,770                         | 1,710                          | 1,670                         | 1,655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,640                         | 1,625                          | 1,625                                | 1,625  |
|                                                       | Temperature = 109°F (43°C)                       |              | Loads only⁵              | T <sub>k,cr</sub>   | (N/mm²)                       | (12.2)                        | (11.8)                         | (11.5)                        | (11.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (11.3)                        | (11.2)                         | (11.2)                               | (11.2) |
| stic I<br>sked                                        | Maximum Short Term<br>Temperature = 162°F (72°C) |              | With Sustained<br>Loads⁴ |                     | psi                           | 1,080                         | 1,045                          | 1,015                         | 1,010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,000                         | 990                            | 990                                  | 990    |
| steris<br>Crac                                        |                                                  |              |                          |                     | (N/mm²)                       | (7.4)                         | (7.2)                          | (7.0)                         | (7.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (6.9)                         | (6.8)                          | (6.8)                                | (6.8)  |
| arao<br>in (                                          | Maximum Lor                                      | iq Term      | 01 / T                   |                     | psi                           | 1,770                         | 1,710                          | 1,670                         | 1,655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,640                         | 1,625                          | 1,625                                | 1,625  |
| ъ                                                     | Temperature = 12                                 | 2°F (50°C)°  |                          |                     | (N/mm²)                       | (12.2)                        | (11.8)                         | (11.5)                        | (11.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (11.3)                        | (11.2)                         | (11.2)                               | (11.2) |
|                                                       | Reduction Factor fo                              | or Seismic T | ension                   | <i>α</i> N,seis     | -                             | 0.97                          | 0.96                           | 0.94                          | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.91                          | 0.90                           | 0.88                                 | 0.87   |
| Ś                                                     | Dry Holes                                        | Continuo     | us Inspection            |                     | -                             |                               | 0.65 0.55                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                |                                      |        |
| actor<br>ins                                          | in Concrete                                      | Periodi      | c Inspection             | $\phi_{ m d}$       | -                             | 0.65 0.55                     |                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                |                                      |        |
| n Fa<br>ble<br>ditio                                  | Water Saturated                                  | Continuo     | us Inspection            |                     | -                             | 0.55                          |                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.65                          |                                |                                      |        |
| ictio<br>issi<br>Con                                  | Holes<br>in Concrete                             | Periodi      | c Inspection             | Øws                 | -                             | 0.55                          | 0.55 0.65                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                |                                      |        |
| ledu<br>Perm<br>tion                                  | Water-filled                                     | Continuo     | us Inspection            |                     | -                             |                               |                                |                               | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45                            |                                |                                      |        |
| for F<br>allat                                        | Holes<br>in Concrete                             | Periodi      | c Inspection             | Øwf                 | -                             |                               |                                |                               | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45                            |                                |                                      |        |
| reng                                                  | Underwater                                       | Continuo     | us Inspection            |                     | -                             |                               |                                |                               | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55                            |                                |                                      |        |
|                                                       | Installation<br>in Concrete                      | Periodi      | c Inspection             | $\phi_{ m uw}$      | -                             |                               |                                |                               | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55                            |                                |                                      |        |
| lifi-<br>on<br>ors                                    | Water-filled                                     | Continuo     | us Inspection            |                     | -                             | 0.91                          | 0.                             | 92                            | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.89                          | 0.88                           | 0.85                                 | 0.82   |
| actors Characteristic Bond St<br>in Cracked Concre    | Holes<br>in Concrete                             | Periodi      | c Inspection             | $K_{wf}$            | -                             | 0.88                          | 0.85                           | 0.83                          | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.80                          | 0.78                           | 0.77                                 | 0.77   |

For **SI:** 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup> Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

**CC-ES**<sup>®</sup> Most Widely Accepted and Trusted

# TABLE 25—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD IN HOLES DRILLED WITH A DIAMOND CORE BIT <sup>1,2</sup>

|                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                                                                        |                         |                     |         |                                | Tł                            | nreaded I                      | Rod Diam                      | (445)         (508)         (572)           1,290         1,240         1,195           (8.9)         (8.6)         (8.2)           1,610         1,550         1,495           (11.1)         (10.7)         (10.3)           980         945         910           (6.8)         (6.5)         (6.3)           1,610         1,550         1,495           (11.1)         (10.7)         (10.3)           980         945         910           (6.8)         (6.5)         (6.3)           1,610         1,550         1,495           (11.1)         (10.7)         (10.3)           965         940         930           (6.6)         (6.5)         (6.4)           1,205         1,175         1,160           (8.3)         (8.1)         (8.0)           735         715         710           (5.1)         (4.9)         (4.9)           1,205         1,175         1,160           (8.3)         (8.1)         (8.0) |                               |                                      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|---------|--------------------------------|-------------------------------|--------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|--|--|
|                                                                                                                                                                                                                                | DESIGN INFORMATION         S           Minimum Embedment Depth         Image: Content Depth |                                                                                                                                                                                                        |                         |                     | Units   | <sup>1</sup> / <sub>2</sub>    | <sup>5</sup> /8               | <sup>3</sup> / <sub>4</sub>    | 7/ <sub>8</sub>               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 <sup>1</sup> / <sub>8</sub> | <b>1</b> <sup>1</sup> / <sub>4</sub> |  |  |
|                                                                                                                                                                                                                                |                                                                                             | mum Embedment Depth                                                                                                                                                                                    |                         |                     | in.     | 2 <sup>3</sup> / <sub>4</sub>  | 3 <sup>1</sup> / <sub>8</sub> | 3 <sup>1</sup> / <sub>2</sub>  | 3 <sup>1</sup> / <sub>2</sub> | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 <sup>1</sup> / <sub>2</sub> | 5                                    |  |  |
|                                                                                                                                                                                                                                | Minimum Emb                                                                                 | edment Dep                                                                                                                                                                                             | oth                     | h <sub>ef,min</sub> | (mm)    | (70)                           | (79)                          | (89)                           | (89)                          | (102)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (114)                         | (127)                                |  |  |
| Maximum Embedment Depth                                                                                                                                                                                                        |                                                                                             |                                                                                                                                                                                                        |                         | in.                 | 10      | 12 <sup>1</sup> / <sub>2</sub> | 15                            | 17 <sup>1</sup> / <sub>2</sub> | 20                            | 22 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25                            |                                      |  |  |
|                                                                                                                                                                                                                                |                                                                                             |                                                                                                                                                                                                        | <b>h</b> ef,max         | (mm)                | (254)   | (318)                          | (381)                         | (445)                          | (508)                         | (572)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (635)                         |                                      |  |  |
| th                                                                                                                                                                                                                             |                                                                                             | · <b>T</b>                                                                                                                                                                                             | With Sustained          |                     | psi     | 1,520                          | 1,425                         | 1,345                          | 1,290                         | 1,240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,195                         | 1,160                                |  |  |
| 'eng<br>ete                                                                                                                                                                                                                    | Maximum Sho<br>Temperature = 16                                                             |                                                                                                                                                                                                        | Loads <sup>4</sup>      |                     | (N/mm²) | (10.5)                         | (9.8)                         | (9.3)                          | (8.9)                         | (8.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (8.2)                         | (8.0)                                |  |  |
| ond Stre<br>Concre                                                                                                                                                                                                             | Maximum Lor                                                                                 | ig Term                                                                                                                                                                                                | Short Term              |                     | psi     | 1,900                          | 1,785                         | 1,680                          | 1,610                         | 1,550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,495                         | 1,450                                |  |  |
| d Cc                                                                                                                                                                                                                           | Temperature = 10                                                                            | 9°F (43°C)°                                                                                                                                                                                            | Loads only⁵             |                     | (N/mm²) | (13.1)                         | (12.3)                        | (11.6)                         | (11.1)                        | (10.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (10.3)                        | (10.0)                               |  |  |
| stic Bo<br>acked                                                                                                                                                                                                               |                                                                                             |                                                                                                                                                                                                        | With Sustained          | Tk,uncr             | psi     | 1,160                          | 1,090                         | 1,025                          | 980                           | 945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 910                           | 885                                  |  |  |
| steris                                                                                                                                                                                                                         | Maximum Sho<br>Temperature = 16                                                             | ortierm                                                                                                                                                                                                | Loads <sup>4</sup>      |                     | (N/mm²) | (8.0)                          | (7.5)                         | (7.1)                          | (6.8)                         | (6.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (6.3)                         | (6.1)                                |  |  |
|                                                                                                                                                                                                                                | Maximum Lor                                                                                 | ig Term                                                                                                                                                                                                | Short Term              |                     | psi     | 1,900                          | 1,785                         | 1,680                          | 1,610                         | 1,550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,495                         | 1,450                                |  |  |
|                                                                                                                                                                                                                                | Temperature = 12                                                                            | 2°F (50°C)°                                                                                                                                                                                            | Loads only⁵             |                     | (N/mm²) | (13.1)                         | (12.3)                        | (11.6)                         | (11.1)                        | (10.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (10.3)                        | (10.0)                               |  |  |
| th                                                                                                                                                                                                                             |                                                                                             |                                                                                                                                                                                                        | With Sustained          |                     | psi     | 965                            | 975                           | 985                            | 965                           | 940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 930                           | 915                                  |  |  |
| eng<br>te                                                                                                                                                                                                                      | Maximum Short Term<br>Temperature = 162°F (72°C)                                            |                                                                                                                                                                                                        | Loads <sup>4</sup>      |                     | (N/mm²) | (6.6)                          | (6.7)                         | (6.8)                          | (6.6)                         | (6.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (6.4)                         | (6.3)                                |  |  |
| d Str                                                                                                                                                                                                                          | Maximum Lor                                                                                 | ig Term                                                                                                                                                                                                |                         |                     | psi     | 1,205                          | 1,220                         | 1,235                          | 1,205                         | 1,175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,160                         | 1,145                                |  |  |
| Bond<br>Con                                                                                                                                                                                                                    | Temperature = 109°F (43°C                                                                   |                                                                                                                                                                                                        | Loads only⁵             |                     | (N/mm²) | (8.3)                          | (8.4)                         | (8.5)                          | (8.3)                         | (8.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (8.0)                         | (7.9)                                |  |  |
| stic I<br>sked                                                                                                                                                                                                                 |                                                                                             |                                                                                                                                                                                                        | With Sustained          | τ <sub>k,cr</sub>   | psi     | 735                            | 745                           | 750                            | 735                           | 715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 710                           | 700                                  |  |  |
| haracteris<br>in Crac                                                                                                                                                                                                          | Maximum Sho<br>Temperature = 16                                                             | ort lerm                                                                                                                                                                                               | Loads <sup>4</sup>      |                     | (N/mm²) | (5.1)                          | (5.1)                         | (5.2)                          | (5.1)                         | (4.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (4.9)                         | (4.8)                                |  |  |
|                                                                                                                                                                                                                                | ੴ ⊆ Maximum Long Term<br>G Temperature = 122°F (50°C                                        |                                                                                                                                                                                                        | 3 Short Term            |                     | psi     | 1,205                          | 1,220                         | 1,235                          | 1,205                         | 1,175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,160                         | 1,145                                |  |  |
| ъ                                                                                                                                                                                                                              |                                                                                             |                                                                                                                                                                                                        | Loads only <sup>5</sup> |                     | (N/mm²) | (8.3)                          | (8.4)                         | (8.5)                          | (8.3)                         | (8.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (8.0)                         | (7.9)                                |  |  |
| F                                                                                                                                                                                                                              | Reduction Factor for Seismic Tension                                                        |                                                                                                                                                                                                        |                         | <i>α</i> N,seis     | -       | 0.96                           | 0.94                          | 0.93                           | 0.91                          | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.88                          | 0.87                                 |  |  |
| S                                                                                                                                                                                                                              | Dry Holes                                                                                   | Continuo                                                                                                                                                                                               | us Inspection           | 1                   | -       | 0.0                            | 65                            |                                | 0.55                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                            |                                      |  |  |
| actor                                                                                                                                                                                                                          | in Concrete                                                                                 | Periodic Inspection                                                                                                                                                                                    |                         | φd                  | -       | 0.0                            | 65                            |                                | 0.55                          | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                      |  |  |
| n Fa<br>ible<br>iditic                                                                                                                                                                                                         | Water Saturated<br>Holes                                                                    | Continuo                                                                                                                                                                                               | us Inspection           | 4                   | -       | 0.65                           |                               |                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                      |  |  |
| Lictio                                                                                                                                                                                                                         | in Concrete                                                                                 | Periodic Inspection                                                                                                                                                                                    |                         | $\phi_{ws}$         | -       | 0.0                            | 0.65 0.55 0.4                 |                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                      |  |  |
| Red(<br>Ferr<br>tion                                                                                                                                                                                                           | Water-filled<br>Holes                                                                       | Continuo                                                                                                                                                                                               | us Inspection           | 4                   | -       |                                |                               |                                | 0.45                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                      |  |  |
| gth F<br>for I<br>talla                                                                                                                                                                                                        | in Concrete                                                                                 | Periodio                                                                                                                                                                                               | c Inspection            | Øwf                 | -       |                                |                               |                                | 0.45                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                      |  |  |
| Inst                                                                                                                                                                                                                           | Underwater                                                                                  | Continuo                                                                                                                                                                                               | us Inspection           | 1                   | -       | 0.45                           |                               |                                | 0.                            | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                      |  |  |
| S                                                                                                                                                                                                                              | Installation<br>in Concrete                                                                 | Periodio                                                                                                                                                                                               | c Inspection            | $\phi_{uw}$         | -       | 0.45                           |                               |                                | 0.                            | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                      |  |  |
|                                                                                                                                                                                                                                | Dry Holes                                                                                   | Continuo                                                                                                                                                                                               | us Inspection           | V                   | -       |                                |                               | 1                              | .0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 0.98                                 |  |  |
| Ę                                                                                                                                                                                                                              | in Concrete                                                                                 | Periodio                                                                                                                                                                                               | c Inspection            | Kd                  | -       | 1.0 0.9                        |                               |                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 0.98                                 |  |  |
| catic<br>tors                                                                                                                                                                                                                  | Water Saturated                                                                             | Continuo                                                                                                                                                                                               | us Inspection           | V                   | -       |                                |                               |                                | 1.0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                      |  |  |
| Modification     Strength Reduction Factors     Characteristic Bond Strength     Characteristic Bond Strength       Factors     for Permissible     in Cracked Concrete     in Uncracked Concrete       Sime     M     M     M | Holes<br>in Concrete                                                                        | Periodio                                                                                                                                                                                               | c Inspection            | $K_{ws}$            | -       | 1.0                            |                               |                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.98                          |                                      |  |  |
| Ĕ                                                                                                                                                                                                                              | Water-filled                                                                                | Continuo                                                                                                                                                                                               | us Inspection           | V                   | -       | 0.95                           |                               |                                | 1                             | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                      |  |  |
|                                                                                                                                                                                                                                | Holes<br>in Concrete                                                                        | rt Term<br>2°F (72°C),<br>g Term<br>9°F (43°C) <sup>3</sup><br>SI<br>2°F (72°C),<br>g Term<br>2°F (72°C),<br>g Term<br>2°F (50°C) <sup>3</sup><br>SI<br>Continuous Ir<br>Periodic Ins<br>Continuous Ir | c Inspection            | $K_{wf}$            | -       | 0.94                           |                               | 0.97                           |                               | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.94                          | 0.92                                 |  |  |
|                                                                                                                                                                                                                                |                                                                                             | lbf = 4.440                                                                                                                                                                                            | N 4 mai = 0.000         |                     |         | -                              | -                             |                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             |                                      |  |  |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

**CC-ES**<sup>®</sup> Most Widely Accepted and Trusted

| TABLE 26—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD    |  |
|--------------------------------------------------------------------------|--|
| IN HOLES DRILLED WITH A HAMMER DRILL AND HOLLOW DRILL BIT <sup>1,2</sup> |  |

|                                                                          |                                                                                                     |                     |                             |                     |                               | Threaded Rod Diameter (inch) <sup>6</sup> |                                |                               |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------|-----------------------------|---------------------|-------------------------------|-------------------------------------------|--------------------------------|-------------------------------|--------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
|                                                                          | DESIGN INF                                                                                          | ORMATION            | l l                         | Symbol              | Units                         | <sup>3</sup> /8                           | <sup>1</sup> / <sub>2</sub>    | <sup>5</sup> /8               | <sup>3</sup> / <sub>4</sub>    | 7/ <sub>8</sub> | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 <sup>1</sup> / <sub>4</sub> |  |
|                                                                          | Minimum Embedment Depth                                                                             |                     | h                           | in.                 | 2 <sup>3</sup> / <sub>8</sub> | 2 <sup>3</sup> / <sub>4</sub>             | 3 <sup>1</sup> / <sub>8</sub>  | 3 <sup>1</sup> / <sub>2</sub> | 3 <sup>1</sup> / <sub>2</sub>  | 4               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |  |
|                                                                          |                                                                                                     |                     |                             | h <sub>ef,min</sub> | (mm)                          | (60)                                      | (70)                           | (79)                          | (89)                           | (89)            | (102)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (127)                         |  |
| Maximum Embedment Depth                                                  |                                                                                                     |                     | h                           | in.                 | 7 <sup>1</sup> / <sub>2</sub> | 10                                        | 12 <sup>1</sup> / <sub>2</sub> | 15                            | 17 <sup>1</sup> / <sub>2</sub> | 20              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |  |
|                                                                          |                                                                                                     |                     | h <sub>ef,max</sub>         | (mm)                | (191)                         | (254)                                     | (318)                          | (381)                         | (445)                          | (508)           | (635)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |  |
| Ę                                                                        | Mauringung Chu                                                                                      |                     | With Sustained              |                     | psi                           | 2,285                                     | 2,135                          | 2,020                         | 1,925                          | 1,855           | 1,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,705                         |  |
| reng<br>ete                                                              | Maximum Sho<br>Temperature = 16                                                                     |                     | Loads <sup>4</sup>          |                     | (N/mm²)                       | (15.8)                                    | (14.7)                         | (13.9)                        | (13.3)                         | (12.8)          | (12.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (11.8)                        |  |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Maximum Lor                                                                                         |                     | Short Term                  |                     | psi                           | 2,855                                     | 2,670                          | 2,525                         | 2,410                          | 2,320           | 2,250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,130                         |  |
|                                                                          | Temperature = 109°F (43°C                                                                           |                     | Loads only⁵                 | _                   | (N/mm²)                       | (19.7)                                    | (18.4)                         | (17.4)                        | (16.6)                         | (16.0)          | (15.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (14.7)                        |  |
| stic<br>acke                                                             | Maximum Cha                                                                                         | rt Tarm             | With Sustained              | Tk,uncr             | psi                           | 1,745                                     | 1,630                          | 1,540                         | 1,470                          | 1,415           | 1,370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,300                         |  |
| cteri                                                                    | Maximum Short Term<br>Temperature = 162°F (72°C)<br>Maximum Long Term<br>Temperature = 122°F (50°C) |                     | Loads <sup>4</sup>          |                     | (N/mm²)                       | (12.0)                                    | (11.2)                         | (10.6)                        | (10.1)                         | (9.8)           | (9.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (9.0)                         |  |
| iarac<br>in U                                                            |                                                                                                     |                     | Short Term                  |                     | psi                           | 2,855                                     | 2,670                          | 2,525                         | 2,410                          | 2,320           | 2,250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,130                         |  |
| Ċ                                                                        |                                                                                                     | .21 (30 0)          | Loads only⁵                 |                     | (N/mm²)                       | (19.7)                                    | (18.4)                         | (17.4)                        | (16.6)                         | (16.0)          | (15.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (14.7)                        |  |
| <b>j</b> th                                                              | Maximum Short Term<br>Temperature = 162°F (72°C)<br>Maximum Long Term<br>Temperature = 109°F (43°C) |                     | With Sustained              | T <sub>k,cr</sub>   | psi                           | 1,390                                     | 1,370                          | 1,335                         | 1,325                          | 1,325           | 1,310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,325                         |  |
| renç                                                                     |                                                                                                     |                     | Loads <sup>4</sup>          |                     | (N/mm²)                       | (9.6)                                     | (9.4)                          | (9.2)                         | (9.1)                          | (9.1)           | (9.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (9.1)                         |  |
| Characteristic Bond Strength<br>in Cracked Concrete                      |                                                                                                     |                     | 3 Short Term<br>Loads only⁵ |                     | psi                           | 1,740                                     | 1,710                          | 1,670                         | 1,655                          | 1,655           | 1,640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,655                         |  |
|                                                                          |                                                                                                     |                     |                             |                     | (N/mm²)                       | (12.0)                                    | (11.8)                         | (11.5)                        | (11.4)                         | (11.4)          | (11.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (11.4)                        |  |
| stic<br>ckec                                                             | Maximum Short Term                                                                                  |                     | With Sustained              |                     | psi                           | 1,060                                     | 1,045                          | 1,015                         | 1,010                          | 1,010           | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,010                         |  |
| cteri<br>Cra                                                             | Temperature = 16                                                                                    | 62°F (72°C),        | Loads <sup>4</sup>          |                     | (N/mm²)                       | (7.3)                                     | (7.2)                          | (7.0)                         | (7.0)                          | (7.0)           | (6.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (7.0)                         |  |
| narao<br>in                                                              | Maximum Lor<br>Temperature = 12                                                                     | ng Term             | Short Term                  |                     | psi                           | 1,740                                     | 1,710                          | 1,670                         | 1,655                          | 1,655           | 1,640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,655                         |  |
| Ċ                                                                        |                                                                                                     | .21 (00 0)          | Loads only <sup>5</sup>     |                     | (N/mm²)                       | (12.0)                                    | (11.8)                         | (11.5)                        | (11.4)                         | (11.4)          | (11.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (11.4)                        |  |
|                                                                          | Reduction Factor fo                                                                                 | or Seismic T        | ension                      | <i>α</i> N,seis     | -                             | 0.97                                      | 0.96                           | 0.94                          | 0.93                           | 0.91            | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.87                          |  |
| actors                                                                   | Dry Holes                                                                                           | Continuo            | us Inspection               | 4                   | -                             | 0.65                                      |                                |                               |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.55                          |  |
| Reduction Fa<br>Permissible<br>ation Condition                           | in Ćoncrete                                                                                         | Periodic Inspection |                             | <i>ф</i> а          | -                             | 0.65 0                                    |                                |                               |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.55                          |  |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | Water Saturated                                                                                     | Continuo            | us Inspection               | ,                   | -                             | 0.65                                      |                                |                               |                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |  |
| Strengt<br>f<br>Insta                                                    | Holes<br>in Concrete                                                                                | Periodio            | c Inspection                | Øws                 | -                             |                                           |                                | 0.                            | 65                             |                 | 1         4           (102)         (1           20         (1           (508)         (1           (12.4)         (1           (12.4)         (1           (15.5)         (1           (15.5)         (1           (15.5)         (1           (15.5)         (1           (15.5)         (1           (15.5)         (1           (15.5)         (1           (15.5)         (1           (15.5)         (1           (16.9)         (1           (11.3)         (1           (11.3)         (1           (0.90)         (1           (11.3)         (1           (0.990)         (1 | 0.55                          |  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

<sup>5</sup>Characteristic bond strengths are for short-term loads including wind.

<sup>6</sup>Size <sup>3</sup>/<sub>8</sub> only allowed with Hollow drill bit brand fischer / Bosch.

|                 | DESIGN                                                    | Or mark al      | l lucito |                             |                             |                 | I                           | Rebar size      | )       |         |         |         |  |
|-----------------|-----------------------------------------------------------|-----------------|----------|-----------------------------|-----------------------------|-----------------|-----------------------------|-----------------|---------|---------|---------|---------|--|
|                 | INFORMATION                                               | Symbol          | Units    | #3                          | #4                          | #5              | #6                          | #7              | #8      | #9      | #10     | #11     |  |
|                 | Nominal Bar Diameter                                      | da              | in.      | <sup>3</sup> / <sub>8</sub> | <sup>1</sup> / <sub>2</sub> | <sup>5</sup> /8 | <sup>3</sup> / <sub>4</sub> | 7/ <sub>8</sub> | 1       | 1.128   | 1.270   | 1.410   |  |
| r               | Nominal dal Diameter                                      | Ua              | (mm)     | (9.5)                       | (12.7)                      | (15.9)          | (19.1)                      | (22.2)          | (25.4)  | (28.7)  | (32.3)  | (35.8)  |  |
| Bar             | effective cross-sectional                                 | Ase             | ln.²     | 0.11                        | 0.20                        | 0.31            | 0.44                        | 0.60            | 0.79    | 1.00    | 1.27    | 1.56    |  |
|                 | area                                                      | Ase             | (mm²)    | (71)                        | (129)                       | (199)           | (284)                       | (387)           | (510)   | (645)   | (819)   | (1006)  |  |
|                 |                                                           | N <sub>sa</sub> | lb       | 6,610                       | 12,005                      | 18,520          | 26,430                      | 36,020          | 47,465  | 60,030  | 76,225  | 93,600  |  |
| 40              | Nominal strength<br>as governed                           | TVsa            | (kN)     | (29.4)                      | (53.4)                      | (82.4)          | (117.6)                     | (160.2)         | (211.1) | (267.0) | (339.1) | (416.4) |  |
| Grade           | by steel strength                                         | Vsa             | lb       | 3,965                       | 7,205                       | 11,115          | 15,860                      | 21,610          | 28,480  | 36,020  | 45,735  | 56,160  |  |
| 5 GI            |                                                           | v sa            | (kN)     | (17.6)                      | (32.0)                      | (49.4)          | (70.5)                      | (96.1)          | (126.7) | (160.2) | (203.4) | (249.8) |  |
| ASTM A615       | Reduction for seismic<br>shear                            | $lpha_{V,seis}$ | -        |                             | 0.74                        |                 |                             |                 |         |         |         |         |  |
| ASTN            | Strength reduction factor $\phi$ for tension <sup>2</sup> | $\phi$          | -        |                             |                             |                 |                             | 0.65            |         |         |         |         |  |
| 1               | Strength reduction factor $\phi$ for shear <sup>2</sup>   | φ               | -        |                             |                             |                 |                             | 0.60            |         |         |         |         |  |
|                 |                                                           |                 | lb       | 9,910                       | 18,010                      | 27,780          | 39,650                      | 54,030          | 71,200  | 90,045  | 114,340 | 140,400 |  |
| 60              | Nominal strength<br>as governed                           | N <sub>sa</sub> | (kN)     | (44.1)                      | (80.1)                      | (123.6)         | (176.4)                     | (240.3)         | (316.7) | (400.5) | (508.6) | (624.5) |  |
| Grade (         | by steel strength                                         | Vsa             | lb       | 5,945                       | 10,805                      | 16,670          | 23,790                      | 32,415          | 42,720  | 54,030  | 68,605  | 84,240  |  |
| 5 Gr            |                                                           | <b>V</b> sa     | (kN)     | (26.5)                      | (48.1)                      | (74.1)          | (105.8)                     | (144.2)         | (190.0) | (240.3) | (305.2) | (374.7) |  |
| I A61           | Reduction for seismic shear                               | αV,seis         | -        |                             |                             |                 |                             | 0.74            |         |         |         |         |  |
| ASTM A615       | Strength reduction factor $\phi$ for tension <sup>2</sup> | φ               | -        |                             |                             |                 |                             | 0.65            |         |         |         |         |  |
|                 | Strength reduction factor $\phi$ for shear <sup>2</sup>   | $\phi$          | -        |                             |                             |                 |                             | 0.60            |         |         |         |         |  |
|                 |                                                           |                 | lb       | 8,810                       | 16,010                      | 24,695          | 35,245                      | 48,025          | 63,290  | 80,040  | 101,635 | 124,800 |  |
| 60              | Nominal strength                                          | N <sub>sa</sub> | (kN)     | (39.2)                      | (71.2)                      | (109.8)         | (156.8)                     | (213.6)         | (281.5) | (356.0) | (452.1) | (555.1) |  |
| ade             | as governed<br>by steel strength                          | N               | lb       | 5,285                       | 9,605                       | 14,815          | 21,145                      | 28,815          | 37,975  | 48,025  | 60,980  | 74,880  |  |
| 6 G             |                                                           | Vsa             | (kN)     | (23.5)                      | (42.7)                      | (65.9)          | (94.1)                      | (128.2)         | (168.9) | (213.6) | (271.3) | (333.0) |  |
| A70             | Reduction for seismic shear                               | αv,seis         | -        | 0.74                        |                             |                 |                             |                 |         |         |         |         |  |
| ASTM A706 Grade | Strength reduction factor $\phi$ for tension <sup>2</sup> | $\phi$          | -        | 0.65                        |                             |                 |                             |                 |         |         |         |         |  |
|                 | Strength reduction factor $\phi$ for shear <sup>2</sup>   | φ               | -        |                             |                             |                 |                             | 0.60            |         |         |         |         |  |

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi.

<sup>1</sup>Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 and ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b, as applicable. <sup>2</sup>For use with load combinations section 1605.1 of the 2024 and 2021 IBC, Section 1605.2 of the 2018 and 2015 IBC, or ACI 318-19 and ACI

318-14 5.3, as applicable, as set forth in ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable. Values correspond to a brittle steel element.

| DESIG                                                           | N                                            |                     |                                               |                                                                        |                                                                                                                       |                                |                               | Rebar Size                     | )     |                                |       |                                |  |  |
|-----------------------------------------------------------------|----------------------------------------------|---------------------|-----------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|--------------------------------|-------|--------------------------------|-------|--------------------------------|--|--|
| INFORMA                                                         |                                              | Symbol              | Units                                         | #3                                                                     | #4                                                                                                                    | #5                             | #6                            | #7                             | #8    | #9                             | #10   | #11                            |  |  |
|                                                                 |                                              | ,                   | in.                                           | 2 <sup>3</sup> / <sub>8</sub>                                          | 2 <sup>3</sup> / <sub>4</sub>                                                                                         | 3 <sup>1</sup> / <sub>8</sub>  | 3 <sup>1</sup> / <sub>2</sub> | 3 <sup>1</sup> / <sub>2</sub>  | 4     | 4 <sup>1</sup> / <sub>2</sub>  | 5     | 5 <sup>1</sup> / <sub>2</sub>  |  |  |
| Embedment                                                       | Minimum                                      | h <sub>ef,min</sub> | (mm)                                          | (60)                                                                   | (70)                                                                                                                  | (79)                           | (89)                          | (89)                           | (102) | (114)                          | (127) | (140)                          |  |  |
| Depth                                                           | Maria                                        | 4                   | in.                                           | 7 <sup>1</sup> / <sub>2</sub>                                          | 10                                                                                                                    | 12 <sup>1</sup> / <sub>2</sub> | 15                            | 17 <sup>1</sup> / <sub>2</sub> | 20    | 22 <sup>1</sup> / <sub>2</sub> | 25    | 27 <sup>1</sup> / <sub>2</sub> |  |  |
|                                                                 | Maximum                                      | h <sub>ef,max</sub> | (mm)                                          | (191)                                                                  | (254)                                                                                                                 | (318)                          | (381)                         | (445)                          | (508) | (572)                          | (635) | (699)                          |  |  |
|                                                                 | Uncracked                                    | 1.                  | in.lb                                         |                                                                        |                                                                                                                       |                                |                               | 24                             |       |                                |       |                                |  |  |
| Effectiveness Concrete k <sub>c,uncr</sub> (SI) (10)            |                                              |                     |                                               |                                                                        |                                                                                                                       |                                |                               |                                |       |                                |       |                                |  |  |
| Factor                                                          | Cracked                                      | 1.                  | in.lb                                         |                                                                        |                                                                                                                       |                                |                               | 17                             |       |                                |       |                                |  |  |
|                                                                 | Concrete                                     | K <sub>c,cr</sub>   | (SI)                                          |                                                                        | (7.1)                                                                                                                 |                                |                               |                                |       |                                |       |                                |  |  |
|                                                                 | Anchor<br>Spacing                            | S <sub>min</sub>    | in.<br>(mm)                                   |                                                                        |                                                                                                                       |                                |                               | $s_{min} = c_{min}$            |       |                                |       |                                |  |  |
|                                                                 | Edge                                         |                     | in.                                           | 1.69                                                                   | 2.28                                                                                                                  | 2.56                           | 3.15                          | 3.74                           | 4.33  | 5.12                           | 6.30  | 6.89                           |  |  |
| Minimum                                                         | Distance                                     |                     | (mm)                                          | (43)                                                                   | (58)                                                                                                                  | (65)                           | (80)                          | (95)                           | (110) | (130)                          | (160) | (175)                          |  |  |
| Value                                                           | Member<br>Thickness                          | h <sub>min</sub>    | in.<br>(mm)                                   | h <sub>ef</sub> + 1.25<br>(≥ 4.0)<br>(h <sub>ef</sub> + 30<br>[≥ 100]) | $\begin{array}{c} h_{ef} + 1.25 \\ (\geq 4.0) \\ (h_{ef} + 30 \end{array} \end{array} h_{ef} + 2d_0^{-1} \end{array}$ |                                |                               |                                |       |                                |       |                                |  |  |
| Critical Value                                                  | Edge<br>Distance<br>for Splitting<br>Failure | Cac                 | in.<br>(mm) See Section 4.1.10 of this report |                                                                        |                                                                                                                       |                                |                               |                                |       |                                |       |                                |  |  |
| Strength<br>reduction factor<br>ø, concrete                     | Tension                                      | φ                   | -                                             |                                                                        |                                                                                                                       |                                |                               | 0.65                           |       |                                |       |                                |  |  |
| $\phi$ , concrete<br>failure modes,<br>Condition B <sup>2</sup> | Shear                                        | φ                   | -                                             |                                                                        |                                                                                                                       |                                |                               | 0.70                           |       |                                |       |                                |  |  |

### TABLE 28—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL REINFORCING BAR

For **SI:** 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi.

 $^{1}$  d<sub>0</sub> = drill hole diameter

<sup>2</sup>The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

# TABLE 29—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARIN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT 1.2.6

|                                                                          |                                                                                                |                                                                            |                    |                     |         |                               |                               |                                | Re                            | bar Siz                        | ze     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------|---------------------|---------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------|
|                                                                          | DESIGN INF                                                                                     | ORMATION                                                                   | 1                  | Symbol              | Units   | #3                            | #4                            | #5                             | #6                            | #7                             | #8     | #9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #10    | #11                            |
|                                                                          |                                                                                                |                                                                            |                    |                     | in.     | 2 <sup>3</sup> /8             | 2 <sup>3</sup> / <sub>4</sub> | 3 <sup>1</sup> / <sub>8</sub>  | 3 <sup>1</sup> / <sub>2</sub> | 3 <sup>1</sup> / <sub>2</sub>  | 4      | 4 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5      | 5 <sup>1</sup> / <sub>2</sub>  |
|                                                                          | Minimum Emb                                                                                    | edment Dep                                                                 | oth                | h <sub>ef,min</sub> | (mm)    | (60)                          | (70)                          | (79)                           | (89)                          | (89)                           | (102)  | (114)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (127)  | (140)                          |
|                                                                          | Mariana Fach                                                                                   |                                                                            | . 41               | 4                   | in.     | 7 <sup>1</sup> / <sub>2</sub> | 10                            | 12 <sup>1</sup> / <sub>2</sub> | 15                            | 17 <sup>1</sup> / <sub>2</sub> | 20     | 22 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25     | 27 <sup>1</sup> / <sub>2</sub> |
|                                                                          | Maximum Emb                                                                                    | eament De                                                                  | pth                | <b>h</b> ef,max     | (mm)    | (191)                         | (254)                         | (318)                          | (381)                         | (445)                          | (508)  | (572)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (635)  | (699)                          |
| ţ                                                                        | Mariana                                                                                        |                                                                            | With Sustained     |                     | psi     | 1,555                         | 1,510                         | 1,460                          | 1,440                         | 1,405                          | 1,380  | 1,360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,345  | 740                            |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Maximum Sho<br>Temperature = 16                                                                |                                                                            | Loads <sup>4</sup> |                     | (N/mm²) | (10.7)                        | (10.4)                        | (10.1)                         | (9.9)                         | (9.7)                          | (9.5)  | (9.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (9.3)  | (5.1)                          |
| d Sti<br>oncr                                                            | Maximum Lor<br>Temperature = 10                                                                | g Term                                                                     | Short Term         |                     | psi     | 1,945                         | 1,885                         | 1,825                          | 1,800                         | 1,755                          | 1,725  | 1,695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,680  | 1,030                          |
| aracteristic Bond Strenç<br>in Uncracked Concrete                        | Temperature – To                                                                               | 9 F (43 C) <sup>-</sup>                                                    | Loads only⁵        |                     | (N/mm²) | (13.4)                        | (13.0)                        | (12.6)                         | (12.4)                        | (12.1)                         | (11.9) | (11.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (11.6) | (7.1)                          |
| stic  <br>acke                                                           | Mauimum Cha                                                                                    |                                                                            | With Sustained     | Tk,uncr             | psi     | 1,185                         | 1,150                         | 1,115                          | 1,095                         | 1,070                          | 1,055  | 1,035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,025  | 740                            |
| cteri                                                                    | Temperature = 162°F (72°C),<br>Maximum Long Term<br>Temperature = 122°F (50°C) <sup>3</sup> Sh |                                                                            | Loads <sup>4</sup> |                     | (N/mm²) | (8.2)                         | (7.9)                         | (7.7)                          | (7.6)                         | (7.4)                          | (7.3)  | (7.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (7.1)  | (5.1)                          |
| iarao<br>in L                                                            | Maximum Long Term                                                                              |                                                                            | Short Term         |                     | psi     | 1,945                         | 1,885                         | 1,825                          | 1,800                         | 1,755                          | 1,725  | 1,695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,680  | 1,030                          |
| Ċ                                                                        | Temperature – 12                                                                               | mperature = 122°F (50°C) <sup>3</sup> Snort fer<br>Loads on<br>With Sustai |                    |                     | (N/mm²) | (13.4)                        | (13.0)                        | (12.6)                         | (12.4)                        | (12.1)                         | (11.9) | (11.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (11.6) | (7.1)                          |
| <b>j</b> th                                                              | Maximum Sho                                                                                    | rt Torm                                                                    | With Sustained     |                     | psi     | 1,055                         | 1,045                         | 1,045                          | 1,055                         | 1,055                          | 1,055  | 1,065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,080  | 690                            |
| rrenç<br>ete                                                             | Temperature = 16                                                                               | 2°F (72°C),                                                                | Loads <sup>4</sup> |                     | (N/mm²) | (7.3)                         | (7.2)                         | (7.2)                          | (7.3)                         | (7.3)                          | (7.3)  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (4.8)  |                                |
| d St<br>ncre                                                             | Maximum Lor<br>Temperature = 10                                                                |                                                                            | Short Term         |                     | psi     | 1,320                         | 1,305                         | 1,305                          | 1,320                         | 1,320                          | 1,320  | 1,335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,350  | 955                            |
| Characteristic Bond Strength<br>in Cracked Concrete                      | Temperature - To                                                                               | 31 (43 C)                                                                  | Loads only⁵        | -                   | (N/mm²) | (9.1)                         | (9.0)                         | (9.0)                          | (9.1)                         | (9.1)                          | (9.1)  | $\begin{array}{c cccc} (9.5) & (9.4) & (9.3) & (5.1) \\ (9.5) & (9.4) & (9.3) & (5.1) \\ (1,725 & 1,695 & 1,680 & 1,030 \\ 11.9) & (11.7) & (11.6) & (7.1) \\ (1,055 & 1,035 & 1,025 & 740 \\ (7.3) & (7.1) & (7.1) & (5.1) \\ (7.3) & (7.1) & (7.1) & (5.1) \\ (7.3) & (7.1) & (7.1) & (5.1) \\ (7.3) & (7.4) & (7.4) & (4.8) \\ (1,320 & 1,335 & 1,350 & 955 \\ (9.1) & (9.2) & (9.3) & (6.6) \\ 805 & 815 & 825 & 690 \\ (5.6) & (5.6) & (5.7) & (4.8) \\ (3.20 & 1,335 & 1,350 & 955 \\ (9.1) & (9.2) & (9.3) & (6.6) \\ 805 & 815 & 825 & 690 \\ (5.6) & (5.6) & (5.7) & (4.8) \\ (3.20 & 1,335 & 1,350 & 955 \\ (9.1) & (9.2) & (9.3) & (6.6) \\ 0.90 & 0.88 & 0.87 & 1.00 \\ \hline 0.55 & & & \\ \hline 0.55 & & & & \\ \hline \end{array}$ | (6.6)  |                                |
| stic<br>cked                                                             | Maximum Sho                                                                                    | rt Torm                                                                    | With Sustained     | $	au_{k,cr}$        | psi     | 805                           | 795                           | 795                            | 805                           | 805                            | 805    | 815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 825    | 690                            |
| cteri<br>Cra                                                             | Temperature = 16                                                                               |                                                                            | Loads <sup>4</sup> |                     | (N/mm²) | (5.6)                         | (5.5)                         | (5.5)                          | (5.6)                         | (5.6)                          | (5.6)  | (5.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (5.7)  | (4.8)                          |
| in                                                                       | Maximum Lor<br>Temperature = 12                                                                |                                                                            | Short Term         |                     | psi     | 1,320                         | 1,305                         | 1,305                          | 1,320                         | 1,320                          | 1,320  | 1,335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,350  | 955                            |
| Ċ                                                                        |                                                                                                | 21 (30 0)                                                                  | Loads only⁵        |                     | (N/mm²) | (9.1)                         | (9.0)                         | (9.0)                          | (9.1)                         | (9.1)                          | (9.1)  | (9.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (9.3)  | (6.6)                          |
| F                                                                        | Reduction Factor fo                                                                            | or Seismic T                                                               | ension             | <i>α</i> N,seis     | -       | 0.97                          | 0.96                          | 0.94                           | 0.93                          | 0.92                           | 0.90   | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.87   | 1.00                           |
| ទ                                                                        | Dry Holes                                                                                      | Continuo                                                                   | us Inspection      | фа                  | -       |                               | 0.65                          |                                |                               |                                | 0.     | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | in Concrete                                                                                    | Periodio                                                                   | c Inspection       | φα                  | -       |                               | 0.65                          |                                |                               |                                | 0.     | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                |
| ible<br>iditio                                                           | Water Saturated<br>Holes                                                                       | Continuo                                                                   | us Inspection      | $\phi_{ws}$         | -       | 0.55                          |                               |                                |                               | 0.65                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 0.55                           |
| th Reduction Faior Paion Paion Paion Paion Paion Paion Condition         | in Concrete                                                                                    | Periodio                                                                   | c Inspection       | Ψws                 | -       | 0.55                          |                               |                                |                               | 0.65                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 0.55                           |
| Perr                                                                     | Water-filled Continuous Inspection                                                             |                                                                            | us Inspection      | Øwf                 | -       |                               |                               |                                | 0.4                           | 45                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | N/A                            |
| gth I<br>for<br>talla                                                    |                                                                                                |                                                                            | $\varphi_{wt}$     | -                   |         |                               |                               | 0.4                            | 45                            |                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A    |                                |
| Ins                                                                      | Underwater Continuous Inspection                                                               |                                                                            | ¢                  | -                   | 0.55    |                               |                               |                                |                               |                                | N/A    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                |
|                                                                          | in Concrete                                                                                    | Periodio                                                                   | c Inspection       | Φuw                 | -       |                               |                               |                                | 0.5                           | 55                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | N/A                            |
| Modifi-<br>cation<br>Factors                                             | Water-filled<br>Holes                                                                          | Continuo                                                                   | us Inspection      | K <sub>wf</sub>     | -       | 0.91                          | 0.                            | 92                             | 0.91                          | 0.89                           | 0.88   | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82     | N/A                            |
| Mo<br>cat<br>Fac                                                         | in Concrete                                                                                    | Periodio                                                                   | c Inspection       | <b>N</b> wt         | -       | 0.88                          | 0.85                          | 0.83                           | 0.82                          | 0.80                           | 0.78   | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77     | N/A                            |

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup> Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

<sup>5</sup>Characteristic bond strengths are for short-term loads including wind.

<sup>6</sup>N/A indicates evaluation is beyond the scope of this report.

#### TABLE 30—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BAR IN HOLES DRILLED WITH A DIAMOND CORE BIT <sup>1,2</sup>

|                                                                          |                                                                                                                                                              |                        |                         |                     |         |                               |                               | Reba                           | r Size                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                |       |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|---------------------|---------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------|-------|
|                                                                          | DESIGN INFO                                                                                                                                                  | 1                      | Symbol                  | Units               | #3      | #4                            | #5                            | #6                             | #7                            | #8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #9    | #10                            |       |
|                                                                          |                                                                                                                                                              |                        |                         | ,                   | in.     | 2 <sup>3</sup> /8             | 2 <sup>3</sup> / <sub>4</sub> | 3 <sup>1</sup> / <sub>8</sub>  | 3 <sup>1</sup> / <sub>2</sub> | 3 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4     | 4 <sup>1</sup> / <sub>2</sub>  | 5     |
|                                                                          | Minimum Embeo                                                                                                                                                | iment Dep              | oth                     | h <sub>ef,min</sub> | (mm)    | (60)                          | (70)                          | (79)                           | (89)                          | (89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (102) | (114)                          | (127) |
|                                                                          |                                                                                                                                                              |                        |                         |                     | in.     | 7 <sup>1</sup> / <sub>2</sub> | 10                            | 12 <sup>1</sup> / <sub>2</sub> | 15                            | 17 <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20    | 22 <sup>1</sup> / <sub>2</sub> | 25    |
|                                                                          | Maximum Embe                                                                                                                                                 | dment De               | oth                     | h <sub>ef,max</sub> | (mm)    | (191)                         | (254)                         | (318)                          | (381)                         | (445)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (508) | (572)                          | (635) |
| ţ                                                                        |                                                                                                                                                              | -                      | With Sustained          |                     | psi     | 1,045                         | 1,020                         | 1,010                          | 1,000                         | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 985   | 975                            | 975   |
| eng<br>ete                                                               | Maximum Short<br>Temperature = 162                                                                                                                           |                        | Loads <sup>4</sup>      |                     | (N/mm²) | (7.2)                         | (7.0)                         | (7.0)                          | (6.9)                         | (6.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (6.8) | (6.7)                          | (6.7) |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Maximum Long                                                                                                                                                 | Term                   | Short Term              |                     | psi     | 1,305                         | 1,275                         | 1,260                          | 1,245                         | 1,245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,235 | 1,220                          | 1,220 |
| d Cc                                                                     | Temperature = 109°                                                                                                                                           | °F (43°C) <sup>s</sup> | Loads only <sup>5</sup> |                     | (N/mm²) | (9.0)                         | (8.8)                         | (8.7)                          | (8.6)                         | (8.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (8.5) | (8.4)                          | (8.4) |
| stic F<br>acke                                                           |                                                                                                                                                              | _                      | With Sustained          | Tk,uncr             | psi     | 795                           | 780                           | 770                            | 760                           | 760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 750   | 745                            | 745   |
| steris                                                                   | Maximum Short<br>Temperature = 162                                                                                                                           | Ierm                   | Loads <sup>4</sup>      |                     | (N/mm²) | (5.5)                         | (5.4)                         | (5.3)                          | (5.2)                         | (5.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (5.2) | (5.1)                          | (5.1) |
| arac<br>in U                                                             | Maximum Long                                                                                                                                                 | Term                   | Short Term              |                     | psi     | 1,305                         | 1,275                         | 1,260                          | 1,245                         | 1,245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,235 | 1,220                          | 1,220 |
| ch                                                                       | Temperature = 122°                                                                                                                                           | F (50°C)°              | Loads only⁵             |                     | (N/mm²) | (9.0)                         | (8.8)                         | (8.7)                          | (8.6)                         | (8.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (8.5) | (8.4)                          | (8.4) |
| ţ                                                                        | Maximum Short Term                                                                                                                                           |                        | With Sustained          |                     | psi     | 555                           | 590                           | 615                            | 650                           | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 650   | 650                            | 660   |
| eng<br>te                                                                | Maximum Short Term                                                                                                                                           |                        | Loads <sup>4</sup>      |                     | (N/mm²) | (3.8)                         | (4.1)                         | (4.2)                          | (4.5)                         | (4.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4.5) | (4.5)                          | (4.6) |
| d Str                                                                    | Maximum Long                                                                                                                                                 | Term                   | Short Term              |                     | psi     | 695                           | 740                           | 770                            | 810                           | (8.6)         (8.5)         (8.4)         (8.4)           650         650         650         660           (4.5)         (4.5)         (4.5)         (4.6)           810         810         810         825           (5.6)         (5.6)         (5.6)         (5.7)           495         495         495         505           (3.4)         (3.4)         (3.4)         (3.5)           810         810         810         825           (5.6)         (5.6)         (5.6)         (5.7) | 825   |                                |       |
| Cor                                                                      | Temperature = 109                                                                                                                                            | °F (43°C) <sup>s</sup> | Loads only <sup>5</sup> |                     | (N/mm²) | (4.8)                         | (5.1)                         | (5.3)                          | (5.6)                         | (5.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (5.6) | (5.6)                          | (5.7) |
| stic F<br>sked                                                           | $\frac{\text{emperature} = 109 \text{ F} (43 \text{ C})^{\circ}}{\text{Loads only}^{5}}$ $\frac{\text{Maximum Short Term}}{\text{With Sustained}}$           | T <sub>k,cr</sub>      | psi                     | 425                 | 450     | 470                           | 495                           | 495                            | 495                           | 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 505   |                                |       |
| Characteristic Bond Strength<br>in Cracked Concrete                      | U Movimum Short Torm                                                                                                                                         | Loads <sup>4</sup>     |                         | (N/mm²)             | (2.9)   | (3.1)                         | (3.2)                         | (3.4)                          | (3.4)                         | (3.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3.4) | (3.5)                          |       |
| arao<br>in (                                                             | B Maximum Short Term<br>5 Temperature = 162°F (72°C),<br>.⊆ Maximum Long Term<br>Temperature = 122°F (50°C) <sup>3</sup>                                     |                        | Short Term              |                     | psi     | 695                           | 740                           | 770                            | 810                           | 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 810   | 810                            | 825   |
| с                                                                        | Temperature = 122                                                                                                                                            | F (50 C)°              | Loads only⁵             |                     | (N/mm²) | (4.8)                         | (5.1)                         | (5.3)                          | (5.6)                         | (5.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (5.6) | (5.6)                          | (5.7) |
| F                                                                        | Reduction Factor for                                                                                                                                         | Seismic T              | ension                  | <i>α</i> N,seis     | -       | 0.97                          | 0.96                          | 0.94                           | 0.93                          | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.90  | 0.88                           | 0.87  |
| γ                                                                        | Dry Holes                                                                                                                                                    | Continue               | ous Inspection          | ,                   | -       | 0.55                          | 0.0                           | 65                             |                               | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 0.                             | 45    |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | in Concrete                                                                                                                                                  | Period                 | ic Inspection           | Ød                  | -       | 0.55                          | 0.0                           | 65                             |                               | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 0.                             | 45    |
| n Fa<br>ible<br>iditic                                                   | Water Saturated                                                                                                                                              | Continue               | ous Inspection          | 4                   | -       |                               |                               |                                | 0.                            | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                |       |
| ength Reduction Facto<br>for Permissible<br>Installation Conditions      | Holes<br>in Concrete                                                                                                                                         | Period                 | ic Inspection           | $\phi_{ws}$         | -       | 0.55                          | 0.                            | 65                             |                               | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 0.                             | 45    |
| Redu                                                                     | Water-filled<br>Holes                                                                                                                                        | Continue               | Continuous Inspection   |                     | -       |                               |                               |                                | 0.                            | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                |       |
| gth F<br>for I<br>talla                                                  | in Concrete                                                                                                                                                  | Period                 | ic Inspection           | Øwf                 | -       |                               |                               |                                | 0.                            | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                |       |
| Ins                                                                      | Underwater                                                                                                                                                   | Continue               | ous Inspection          | 4                   | -       | 0.                            | 45                            |                                |                               | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55    |                                |       |
| Ś                                                                        | Installation in Concrete Periodic Inspection                                                                                                                 |                        | ic Inspection           | $\phi_{uw}$         | -       | 0.4                           | 45                            |                                |                               | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55    |                                |       |
|                                                                          | Dry Holes Continuous Inspection                                                                                                                              |                        | ous Inspection          |                     | -       |                               |                               | 1                              | .0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 0.                             | 98    |
| ц                                                                        |                                                                                                                                                              |                        | ic Inspection           | Kd                  | -       |                               |                               | 1                              | .0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 0.                             | 98    |
| catic<br>tors                                                            | In Concrete     Periodic Inspection       Vater Saturated     Continuous Inspection       Holes     in Concrete       Vater-filled     Continuous Inspection |                        | ous Inspection          |                     | -       |                               |                               |                                | 1                             | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                                |       |
| odifi<br>Fact                                                            | Holes<br>in Concrete                                                                                                                                         | Period                 | ic Inspection           | $K_{ws}$            | -       |                               |                               | 1                              | .0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 0.                             | 98    |
| Ŭ                                                                        | Water-filled                                                                                                                                                 | Continue               | ous Inspection          | V                   | -       | 0.91                          | 0.95                          |                                |                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0    |                                |       |
|                                                                          | Holes<br>in Concrete                                                                                                                                         | Period                 | ic Inspection           | $K_{ m wf}$         | -       | 0.89                          | 0.94                          |                                | 0.97                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.95  | 0.                             | 92    |
| Ear Sh 1                                                                 | in Concrete Periodic Inspection                                                                                                                              |                        | $N_{\rm c} = 0.000$     |                     | •       | •                             | •                             | •                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •     | •                              |       |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

<sup>&</sup>lt;sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c$  = 2,500 psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of ( $f_c / 2,500$ )<sup>0.1</sup> [for SI: ( $f_c / 17.2$ )<sup>0.1</sup>]. See Section 4.1.4 of this report.

 TABLE 31—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BAR

 IN HOLES DRILLED WITH A HAMMER DRILL AND HOLLOW DRILL BIT <sup>1,2</sup>

|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                          | _                       | _                   |         |                               |                                                       | F                              | Rebar Siz                     | е                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|---------|-------------------------------|-------------------------------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                     | DESIGN INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ORMATION                                                                                                                                                                                                                                                                                                                                                                                                                 | N                       | Symbol              | Units   | #3                            | #4                                                    | #5                             | #6                            | #7                             | #8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #9                             |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                          | - 41-                   | 4                   | in.     | 2 <sup>3</sup> /8             | 2 <sup>3</sup> / <sub>4</sub>                         | 3 <sup>1</sup> / <sub>8</sub>  | 3 <sup>1</sup> / <sub>2</sub> | 3 <sup>1</sup> / <sub>2</sub>  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 <sup>1</sup> / <sub>2</sub>  |
|                                                     | Minimum Emb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eament Dep                                                                                                                                                                                                                                                                                                                                                                                                               | DTN                     | h <sub>ef,min</sub> | (mm)    | (60)                          | (70)                                                  | (79)                           | (89)                          | (89)                           | (102)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (114)                          |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                     | in.     | 7 <sup>1</sup> / <sub>2</sub> | 10                                                    | 12 <sup>1</sup> / <sub>2</sub> | 15                            | 17 <sup>1</sup> / <sub>2</sub> | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 <sup>1</sup> / <sub>2</sub> |
|                                                     | Maximum Emb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | edment De                                                                                                                                                                                                                                                                                                                                                                                                                | pth                     | h <sub>ef,max</sub> | (mm)    | (191)                         | (254)                                                 | (318)                          | (381)                         | (445)                          | (508)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (572)                          |
| ţ                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                               | With Sustained          |                     | psi     | 1,115                         | 1,135                                                 | 1,150                          | 1,170                         | 1,195                          | 1,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,230                          |
| 'eng<br>ete                                         | 0 0 Iemperature = 162°F (72°C),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                          | Loads <sup>4</sup>      |                     | (N/mm²) | (7.7)                         | (7.8)                                                 | (7.9)                          | (8.1)                         | (8.2)                          | (8.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (8.5)                          |
| d Str<br>oncr                                       | Maximum Lor<br>Temperature = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng Term                                                                                                                                                                                                                                                                                                                                                                                                                  | Short Term              |                     | psi     | 1,390                         | 1,420                                                 | 1,435                          | 1,465                         | 1,495                          | 1,510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,535                          |
| d Ci<br>Bone                                        | Temperature = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 F (43 C) <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                 | Loads only <sup>5</sup> |                     | (N/mm²) | (9.6)                         | (9.8)                                                 | (9.9)                          | (10.1)                        | (10.3)                         | (10.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (10.6)                         |
| stic I<br>acke                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                               | With Sustained          | Tk,uncr             | psi     | 850                           | 865                                                   | 875                            | 895                           | 910                            | 920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 940                            |
| steris                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum Short Term<br>Load<br>Maximum Long Term<br>Maximum Long Term<br>Short T                                                                                                                                                                                                                                                                                                                                          |                         |                     | (N/mm²) | (5.9)                         | (6.0)                                                 | (6.0)                          | (6.2)                         | (6.3)                          | (6.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (6.5)                          |
| arac<br>in U                                        | Maximum Lor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aaximum Long Term                                                                                                                                                                                                                                                                                                                                                                                                        | Short Term              |                     | psi     | 1,390                         | 1,420                                                 | 1,435                          | 1,465                         | 1,495                          | 1,510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,535                          |
| ch                                                  | Temperature = 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 F (50 C) <sup>e</sup>                                                                                                                                                                                                                                                                                                                                                                                                  | Loads only⁵             |                     | (N/mm²) | (9.6)                         | (9.8)                                                 | (9.9)                          | (10.1)                        | (10.3)                         | (10.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (10.6)                         |
| ţ                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                               | With Sustained          |                     | psi     | 720                           | 755                                                   | 775                            | 825                           | 860                            | $\begin{array}{c cccc} (89) & (102) & ((102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (102) & (1$ | 930                            |
| Characteristic Bond Strength<br>in Cracked Concrete |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Loads only <sup>3</sup> (N/mm <sup>2</sup> )         (9.6)         (9.8)         (9.9)         (10.1)         (10.1)           rt Term<br>2°F (72°C),         With Sustained<br>Loads <sup>4</sup> psi<br>(N/mm <sup>2</sup> )         720         755         775         825         86           v         Loads <sup>4</sup> (N/mm <sup>2</sup> )         (5.0)         (5.2)         (5.4)         (5.7)         (5 | (5.9)                   | (6.1)               | (6.4)   |                               |                                                       |                                |                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| racteristic Bond Strer<br>in Cracked Concrete       | Maximum Lor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng Term                                                                                                                                                                                                                                                                                                                                                                                                                  | Short Term              |                     | psi     | 900                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1,160                          |                               |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| Cot                                                 | Temperature = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lovinum Short Lorm                                                                                                                                                                                                                                                                                                                                                                                                       |                         | (N/mm²)             | (6.2)   | (6.5)                         | (6.7)                                                 | (7.1)                          | (7.4)                         | (7.6)                          | (8.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |
| stic I<br>sked                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . –                                                                                                                                                                                                                                                                                                                                                                                                                      | With Sustained          | $\tau_{k,cr}$       | psi     | 550                           | 575                                                   | 595                            | 630                           | 655                            | 670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 710                            |
| steris<br>Crac                                      | Maximum Sho<br>Temperature = 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                          | Loads <sup>4</sup>      |                     | (N/mm²) | (3.8)                         | (4.0)                                                 | (4.1)                          | (4.3)                         | (4.5)                          | (4.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4.9)                          |
| arao<br>in (                                        | Maximum Lor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng Term                                                                                                                                                                                                                                                                                                                                                                                                                  | Short Term              |                     | psi     | 900                           | 945                                                   | 970                            | 1,030                         | 1,075                          | 1,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,160                          |
| ch                                                  | Temperature = 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 F (50 C) <sup>e</sup>                                                                                                                                                                                                                                                                                                                                                                                                  | Loads only⁵             |                     | (N/mm²) | (6.2)                         | (6.5)                                                 | (6.7)                          | (7.1)                         | (7.4)                          | (7.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (8.0)                          |
| F                                                   | Reduction Factor for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or Seismic T                                                                                                                                                                                                                                                                                                                                                                                                             | ension                  | <i>α</i> N,seis     | -       | 0.97                          | 0.96                                                  | 0.94                           | 0.93                          | 0.92                           | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.88                           |
| actors<br>ons                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                          | us Inspection           |                     | -       |                               |                                                       | 0.                             | 65                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.55                           |
| iction Fa<br>iissible<br>Conditic                   | Dry Holes<br>Dry Holes |                                                                                                                                                                                                                                                                                                                                                                                                                          | c Inspection            | Ød                  | -       |                               |                                                       | 0.                             | 65                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.55                           |
| th Redu<br>or Perm<br>allation (                    | Continuous Inspect<br>or Dry Holes<br>in Concrete<br>Holes<br>in Concrete<br>Holes<br>in Concrete<br>Holes<br>Periodic Inspection<br>Holes<br>Periodic Inspection<br>Holes<br>Periodic Inspection<br>Holes<br>Periodic Inspection<br>Holes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                          | us Inspection           | 1                   | -       |                               |                                                       |                                | 0.65                          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                              |
| Strengt<br>f<br>Insta                               | Holes<br>in Concrete<br>Periodic Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                          | c Inspection            | φws                 | -       |                               |                                                       | 0.                             | 65                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.55                           |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

### TABLE 32—STEEL DESIGN INFORMATION FOR RG M I INTERNAL THREADED (FRACTIONAL) ANCHOR<sup>1</sup>

|                                                                  | DESIGN                                                    | 0.445.01        |       |                             | Anchor Fraction             | nal Thread Size             |         |
|------------------------------------------------------------------|-----------------------------------------------------------|-----------------|-------|-----------------------------|-----------------------------|-----------------------------|---------|
|                                                                  | INFORMATION                                               | SYMBOL          | UNITS | <sup>3</sup> / <sub>8</sub> | <sup>1</sup> / <sub>2</sub> | <sup>5</sup> /8             | 3/4     |
| Nia                                                              | unin al Anakan Diamatan                                   | d               | in.   | <sup>3</sup> / <sub>8</sub> | 1/ <sub>2</sub>             | <sup>5</sup> / <sub>8</sub> | 3/4     |
| NO                                                               | minal Anchor Diameter                                     | de              | (mm)  | (9.5)                       | (12.7)                      | (15.9)                      | (19.1)  |
|                                                                  | Nuten Analan Diamatan                                     | d               | in.   | 0.63                        | 0.72                        | 0.88                        | 1.11    |
| 0                                                                | outer Anchor Diameter                                     | da              | (mm)  | (16.0)                      | (18.3)                      | (22.3)                      | (28.3)  |
| Anobor                                                           | effective cross-sectional area                            | ٨               | in.²  | 0.2133                      | 0.2486                      | 0.3185                      | 0.5267  |
| ALCHOLE                                                          |                                                           | A <sub>se</sub> | (mm²) | (144.6)                     | (147.9)                     | (209.5)                     | (366.0) |
| 5.8<br>8                                                         |                                                           | Δ/              | lb    | 5,620                       | 10,285                      | 16,390                      | 24,255  |
| le 5.                                                            | Nominal strength<br>as governed                           | Nsa             | (kN)  | (25.0)                      | (45.8)                      | (72.9)                      | (107.9) |
| 1 Grade<br>Grade                                                 | by steel strength                                         | Vsa             | lb    | 3,370                       | 6,170                       | 9,835                       | 14,555  |
| 98-1<br>8-1 (                                                    |                                                           | V sa            | (kN)  | (15.0)                      | (27.5)                      | (43.7)                      | (64.7)  |
| 8 × 68<br>0 80                                                   | Reduction for seismic shear                               | αv,seis         | -     |                             | 1.                          | 0                           |         |
| Anchor ISO 898-1 Grade 5.8<br>with<br>Bolt: ISO 898-1 Grade 5.8  | Strength reduction factor $\phi$ for tension <sup>2</sup> | $\phi$          | -     |                             | 0.6                         | 65                          |         |
| Ancl<br>Bo                                                       | Strength reduction factor $\phi$ for shear <sup>2</sup>   | φ               | -     |                             | 0.6                         | 50                          |         |
| 8.8<br>8.8                                                       |                                                           | λ/              | lb    | 8,990                       | 16,455                      | 24,725                      | 38,810  |
| ade .<br>le 8.                                                   | Nominal strength<br>as governed                           | Nsa             | (kN)  | (40.0)                      | (73.2)                      | (110.0)                     | (172.6) |
| 1 Grade<br>Grade 8.                                              | by steel strength                                         | Vsa             | lb    | 5,395                       | 9,875                       | 15,735                      | 23,285  |
| O 898-`<br>with<br>898-1 (                                       |                                                           | <b>v</b> sa     | (kN)  | (24.0)                      | (43.9)                      | (70.0)                      | (103.6) |
| 8 O 8<br>0 8 9 0                                                 | Reduction for seismic shear                               | αv,seis         | -     | 0.5                         | 90                          | -                           | 0.90    |
| Anchor: ISO 898-1 Grade 8.8<br>with<br>Bolt: ISO 898-1 Grade 8.8 | Strength reduction factor $\phi$ for tension <sup>2</sup> | $\phi$          | -     |                             | 0.6                         | 35                          |         |
| Anch<br>Bo                                                       | Strength reduction factor $\phi$ for shear <sup>2</sup>   | φ               | -     |                             | 0.6                         | 50                          |         |
|                                                                  |                                                           | λ/              | lb    | 7,870                       | 14,400                      | 22,945                      | 33,960  |
| 02 02                                                            | Nominal strength                                          | Nsa             | (kN)  | (35.0)                      | (64.1)                      | (102.1)                     | (151.1) |
| solt<br>rade<br>ide 7                                            | as governed<br>by steel strength                          | Vsa             | lb    | 4,720                       | 8,640                       | 13,765                      | 20,375  |
| or / E<br>Gra                                                    |                                                           | V sa            | (kN)  | (21.0)                      | (38.4)                      | (61.2)                      | (90.6)  |
| nchc<br>506-<br>1CR                                              | Reduction for seismic shear                               | αv,seis         | -     |                             | 0.9                         | 90                          |         |
| Anchor / Bolt<br>ISO 3506-1 Grade 70<br>and HCR Grade 70         | Strength reduction factor $\phi$ for tension <sup>2</sup> | φ               | -     |                             | 0.6                         | 35                          |         |
|                                                                  | Strength reduction factor $\phi$ for shear <sup>2</sup>   | φ               | -     |                             | 0.6                         | 50                          |         |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-19 Eq. 17.6.1.2 or ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b, as applicable.

<sup>2</sup>For use with load combinations Section 1605.1 of the 2024 and 2021 IBC, Section 1605.2 of the 2018 and 2015 IBC, or ACI 318-19 and ACI 318-14 5.3, as applicable, as set forth in ACI 318-19 15.5.3 or ACI 318-14 17.3.3, as applicable. Values correspond to a brittle steel element.

### TABLE 33—CONCRETE BREAKOUT DESIGN INFORMATION FOR RG M I INTERNAL THREADED (FRACTIONAL) ANCHOR

| DEG                                                                                      |                                |                     |             |                             | Anchor Fraction             | al Threaded Size            |                             |  |  |
|------------------------------------------------------------------------------------------|--------------------------------|---------------------|-------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--|--|
|                                                                                          | SIGN<br>MATION                 | SYMBOL              | UNITS       | 2.                          |                             |                             | 2.                          |  |  |
| INFORI                                                                                   | WATION                         |                     |             | <sup>3</sup> / <sub>8</sub> | <sup>1</sup> / <sub>2</sub> | <sup>5</sup> / <sub>8</sub> | <sup>3</sup> / <sub>4</sub> |  |  |
| Embodm                                                                                   | ent Depth                      | h <sub>ef</sub>     | in          | 3.54                        | 4.92                        | 6.30                        | 7.87                        |  |  |
| Embedin                                                                                  | ent Depth                      | llef                | (mm)        | (90)                        | (125)                       | (160)                       | (200)                       |  |  |
|                                                                                          | Uncracked                      | k                   | in.lb       |                             | 2                           | 4                           |                             |  |  |
| Effectiveness                                                                            | Concrete                       | k <sub>c,uncr</sub> | (SI)        |                             | (1                          | 0)                          |                             |  |  |
| Factor                                                                                   | Cracked                        | 1.                  | in.lb       |                             | 1                           | 7                           |                             |  |  |
|                                                                                          | Concrete                       | k <sub>c,cr</sub>   | (SI)        |                             | (7                          | .1)                         |                             |  |  |
|                                                                                          | Anchor Spacing                 | Smin                | in.<br>(mm) |                             | S <sub>min</sub> =          | = C <sub>min</sub>          |                             |  |  |
| Minimum                                                                                  | Edge Distance                  |                     | in.         | 2.56                        | 2.95                        | 3.74                        | 4.92                        |  |  |
| Value                                                                                    | Edge Distance                  | Cmin                | (mm)        | (65)                        | (75)                        | (95)                        | (125)                       |  |  |
|                                                                                          | Member                         | 6                   | in.         | 125                         | 165                         | 205                         | 260                         |  |  |
|                                                                                          | Thickness                      | h <sub>min</sub>    | (mm)        | (4.92)                      | (6.50)                      | (8.07)                      | (10.24)                     |  |  |
| Critical                                                                                 | Edge Distance<br>for Splitting |                     | 6           | in.                         |                             |                             |                             |  |  |
| Value                                                                                    | for Splitting<br>Failure       | Cac                 | (mm)        |                             | See Section 4.1             | .10 of this report          |                             |  |  |
| Strength<br>reduction factor                                                             | Tension                        | φ                   | -           |                             | 0.                          | 65                          |                             |  |  |
| <ul> <li>φ, concrete</li> <li>failure modes,</li> <li>Condition B<sup>1</sup></li> </ul> | Shear                          | φ                   | -           |                             | 0.                          | 70                          |                             |  |  |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

#### TABLE 34—BOND STRENGTH DESIGN INFORMATION FOR RG M I INTERNAL THREADED (FRACTIONAL) ANCHOR IN HOLES DRILLED WITH A HAMMER DRILL and CARBIDE BIT <sup>1,2</sup>

|                                                                          |                                                                                                                                                                                                                                                                                                                                  |              |                    |                 |         | An                          | chor Fractional             | Thread Size (ir             | nch)   |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|-----------------|---------|-----------------------------|-----------------------------|-----------------------------|--------|
|                                                                          | DESIGN INF                                                                                                                                                                                                                                                                                                                       | ORMATION     | 1                  | Symbol          | Units   | <sup>3</sup> / <sub>8</sub> | <sup>1</sup> / <sub>2</sub> | <sup>5</sup> / <sub>8</sub> | 3/4    |
|                                                                          | Embedme                                                                                                                                                                                                                                                                                                                          | ont Donth    |                    | h <sub>ef</sub> | in.     | 3.54                        | 4.92                        | 6.30                        | 7.87   |
|                                                                          | Embedine                                                                                                                                                                                                                                                                                                                         | ani Depin    |                    | Hef             | (mm)    | (90)                        | (125)                       | (160)                       | (200)  |
| lth                                                                      | Maximum Sho                                                                                                                                                                                                                                                                                                                      | ut Tarm      | With Sustained     |                 | psi     | 2,170                       | 2,125                       | 2,040                       | 1,960  |
| renç<br>ete                                                              | Temperature = 16                                                                                                                                                                                                                                                                                                                 |              | Loads <sup>4</sup> |                 | (N/mm²) | (15.0)                      | (14.6)                      | (14.1)                      | (13.5) |
| d St<br>onci                                                             | Maximum Lor<br>Temperature = 10                                                                                                                                                                                                                                                                                                  |              | Short Term         |                 | psi     | 2,710                       | 2,655                       | 2,555                       | 2,450  |
| Bon<br>ed C                                                              |                                                                                                                                                                                                                                                                                                                                  | 9 F (43 C)   | Loads only⁵        | _               | (N/mm²) | (18.7)                      | (18.3)                      | (17.6)                      | (16.9) |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Maximum Sho                                                                                                                                                                                                                                                                                                                      | ut Tarm      | With Sustained     | $	au_{k,uncr}$  | psi     | 1,655                       | 1,620                       | 1,555                       | 1,495  |
| cteri                                                                    | Temperature = 16                                                                                                                                                                                                                                                                                                                 | 2°F (72°C),  | Loads <sup>4</sup> |                 | (N/mm²) | (11.4)                      | (11.2)                      | (10.7)                      | (10.3) |
| iarac<br>in L                                                            | Maximum Lor                                                                                                                                                                                                                                                                                                                      |              | Short Term         |                 | psi     | 2,710                       | 2,655                       | 2,555                       | 2,450  |
| ò                                                                        |                                                                                                                                                                                                                                                                                                                                  |              | Loads only⁵        |                 | (N/mm²) | (18.7)                      | (18.3)                      | (17.6)                      | (16.9) |
| jth                                                                      | £ Maximum Short Term Wit                                                                                                                                                                                                                                                                                                         |              | With Sustained     |                 | psi     | 1,345                       | 1,325                       | 1,310                       | 1,300  |
| Characteristic Bond Strength<br>in Cracked Concrete                      | ති Maximum Short Term<br>වූ චූ Temperature = 162°F (72°C)                                                                                                                                                                                                                                                                        |              | Loads <sup>4</sup> |                 | (N/mm²) | (9.3)                       | (9.1)                       | (9.0)                       | (9.0)  |
| racteristic Bond Strer<br>in Cracked Concrete                            | Maximum Lor<br>Temperature = 10                                                                                                                                                                                                                                                                                                  |              | Short Term         |                 | psi     | 1,680                       | 1,655                       | 1,640                       | 1,625  |
| Bon<br>I Co                                                              |                                                                                                                                                                                                                                                                                                                                  | 9 F (43 C)   | Loads only⁵        |                 | (N/mm²) | (11.6)                      | (11.4)                      | (11.3)                      | (11.2) |
| stic<br>ckec                                                             | Maximum Sho                                                                                                                                                                                                                                                                                                                      | ut Tarm      | With Sustained     | $\tau_{k,cr}$   | psi     | 1,025                       | 1,010                       | 1,000                       | 990    |
| cteri<br>Cra                                                             | Temperature = 16                                                                                                                                                                                                                                                                                                                 | 2°F (72°C),  | Loads <sup>4</sup> |                 | (N/mm²) | (7.1)                       | (7.0)                       | (6.9)                       | (6.8)  |
| in                                                                       | Maximum Lor<br>Temperature = 12                                                                                                                                                                                                                                                                                                  |              | Short Term         |                 | psi     | 1,680                       | 1,655                       | 1,640                       | 1,625  |
| ò                                                                        |                                                                                                                                                                                                                                                                                                                                  | 21 (30 0)    | Loads only⁵        |                 | (N/mm²) | (11.6)                      | (11.4)                      | (11.3)                      | (11.2) |
| F                                                                        | Reduction Factor fo                                                                                                                                                                                                                                                                                                              | or Seismic T | ension             | αN,seis         | -       | 0.94                        | 0.93                        | 0.91                        | 0.88   |
| S                                                                        | Dry Holes                                                                                                                                                                                                                                                                                                                        | Continuo     | us Inspection      | 4               | -       | 0.65                        |                             | 0.55                        |        |
| acto<br>ons                                                              | in Concrete                                                                                                                                                                                                                                                                                                                      | Periodi      | c Inspection       | $\phi_{ m d}$   | -       | 0.65                        |                             | 0.55                        |        |
| th Reduction Faior Paion Paion Paion Paion Paion Paion Condition         | Water Saturated<br>Holes                                                                                                                                                                                                                                                                                                         | Continuo     | us Inspection      | Å               | -       |                             | 0.0                         | 65                          |        |
| Lictic                                                                   | in Concrete                                                                                                                                                                                                                                                                                                                      | Periodi      | c Inspection       | Øws             | -       |                             | 0.0                         | 65                          |        |
| Red I                                                                    | Water-filled                                                                                                                                                                                                                                                                                                                     | Continuo     | us Inspection      | 4.              | -       | 0.45                        |                             |                             |        |
| gth F<br>for<br>talla                                                    | sin ConcretePeriodic InspectionWater Saturated<br>Holes<br>in ConcreteContinuous InspectionWater Saturated<br>Holes<br>in ConcretePeriodic InspectionWater-filled<br>Holes<br>in ConcreteContinuous InspectionWater-filled<br>Holes<br>in ConcreteContinuous InspectionWater-filled<br>Holes<br>in ConcreteContinuous Inspection |              | c Inspection       | Øwf             | -       |                             | 0.4                         | 45                          |        |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | Underwater Continuous Inspection                                                                                                                                                                                                                                                                                                 |              | us Inspection      | 4               | -       |                             | 0.                          | 55                          |        |
|                                                                          | in Concrete                                                                                                                                                                                                                                                                                                                      | Periodi      | c Inspection       | $\phi_{uw}$     | -       |                             | 0.:                         | 55                          |        |
| Modifi-<br>cation<br>Factors                                             | Water-filled                                                                                                                                                                                                                                                                                                                     | Continuo     | us Inspection      | V               | -       | 0.92                        | 0.91                        | 0.89                        | 0.85   |
| Mot<br>cat<br>Fac                                                        | Holes<br>in Concrete                                                                                                                                                                                                                                                                                                             | Periodi      | c Inspection       | $K_{wf}$        | -       | 0.83                        | 0.82                        | 0.80                        | 0.77   |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of ( $f_c / 2,500$ )<sup>0.1</sup> [for SI: ( $f_c / 17.2$ )<sup>0.1</sup>]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling.

Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

# TABLE 35—BOND STRENGTH DESIGN INFORMATION FOR RG M I INTERNAL THREADED (FRACTIONAL) ANCHOR IN HOLES DRILLED WITH A DIAMOND CORE BIT <sup>1,2</sup>

|                                                                          |                                                                                                                                                                                                                                                                                                                                                     |              |                         |                 |                     | An                          | chor Fractional             | Thread Size (ir             | nch)                        |      |  |      |      |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|-----------------|---------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------|--|------|------|
|                                                                          | DESIGN INF                                                                                                                                                                                                                                                                                                                                          | ORMATION     | 4                       | Symbol          | Units               | <sup>3</sup> / <sub>8</sub> | <sup>1</sup> / <sub>2</sub> | <sup>5</sup> / <sub>8</sub> | <sup>3</sup> / <sub>4</sub> |      |  |      |      |
|                                                                          | Embodm                                                                                                                                                                                                                                                                                                                                              | ant Donth    |                         | h               | in.                 | 3.54                        | 4.92                        | 6.30                        | 7.87                        |      |  |      |      |
|                                                                          | Embedme                                                                                                                                                                                                                                                                                                                                             | ent Depth    |                         | h <sub>ef</sub> | (mm)                | (90)                        | (125)                       | (160)                       | (200)                       |      |  |      |      |
| ţ                                                                        | Mariana                                                                                                                                                                                                                                                                                                                                             |              | With Sustained          |                 | psi                 | 1,425                       | 1,370                       | 1,290                       | 1,195                       |      |  |      |      |
| reng<br>ete                                                              | Maximum Sho<br>Temperature = 16                                                                                                                                                                                                                                                                                                                     |              | Loads <sup>4</sup>      |                 | (N/mm²)             | (9.8)                       | (9.4)                       | (8.9)                       | (8.2)                       |      |  |      |      |
| d Sti                                                                    | Maximum Lor<br>Temperature = 10                                                                                                                                                                                                                                                                                                                     | ng Term      | Short Term              |                 | psi                 | 1,785                       | 1,710                       | 1,610                       | 1,495                       |      |  |      |      |
| ŭ Ŭ<br>g Ũ                                                               |                                                                                                                                                                                                                                                                                                                                                     | 9 F (43 C)   | Loads only⁵             |                 | (N/mm²)             | (12.3)                      | (11.8)                      | (11.1)                      | (10.3)                      |      |  |      |      |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Mariana                                                                                                                                                                                                                                                                                                                                             |              | With Sustained          | Tk,uncr         | psi                 | 1,090                       | 1,045                       | 980                         | 910                         |      |  |      |      |
| cteris                                                                   | Maximum Sho<br>Temperature = 16                                                                                                                                                                                                                                                                                                                     |              | Loads <sup>4</sup>      |                 | (N/mm²)             | (7.5)                       | (7.2)                       | (6.8)                       | (6.3)                       |      |  |      |      |
| arac<br>in U                                                             | Maximum Lor<br>Temperature = 12                                                                                                                                                                                                                                                                                                                     | ng Term      | Short Term              |                 | psi                 | 1,785                       | 1,710                       | 1,610                       | 1,495                       |      |  |      |      |
| ch                                                                       | Temperature = 12                                                                                                                                                                                                                                                                                                                                    | 2 F (50 C)   | Loads only⁵             |                 | (N/mm²)             | (12.3)                      | (11.8)                      | (11.1)                      | (10.3)                      |      |  |      |      |
| Ith                                                                      | Maximum Short Term                                                                                                                                                                                                                                                                                                                                  |              | With Sustained          |                 | psi                 | 975                         | 1,000                       | 965                         | 940                         |      |  |      |      |
| reng<br>te                                                               | Temperature = 162°F (72°C                                                                                                                                                                                                                                                                                                                           |              | Loads <sup>4</sup>      |                 | (N/mm²)             | (6.7)                       | (6.9)                       | (6.6)                       | (6.5)                       |      |  |      |      |
| Characteristic Bond Strength<br>in Cracked Concrete                      | Temperature = 162°F (72°C),<br>Maximum Long Term<br>Temperature = 109°F (43°C) <sup>3</sup><br>Maximum Short Term<br>Maximum Short Term<br>Temperature = 162°F (72°C),<br>Maximum Long Term                                                                                                                                                         | Short Term   |                         | psi             | 1,220               | 1,245                       | 1,205                       | 1,175                       |                             |      |  |      |      |
| Co                                                                       | Temperature = 109°F (43°C                                                                                                                                                                                                                                                                                                                           |              | Loads only⁵             |                 | (N/mm²)             | (8.4)                       | (8.6)                       | (8.3)                       | (8.1)                       |      |  |      |      |
| stic  <br>cked                                                           | Mariana                                                                                                                                                                                                                                                                                                                                             |              | With Sustained          | Tk,cr           | psi                 | 745                         | 760                         | 735                         | 715                         |      |  |      |      |
| crac                                                                     | Maximum Sho<br>Temperature = 16                                                                                                                                                                                                                                                                                                                     |              | Loads <sup>4</sup>      |                 | (N/mm²)             | (5.1)                       | (5.2)                       | (5.1)                       | (4.9)                       |      |  |      |      |
| in<br>in                                                                 | Maximum Lor<br>Temperature = 12                                                                                                                                                                                                                                                                                                                     |              | Short Term              |                 | psi                 | 1,220                       | 1,245                       | 1,205                       | 1,175                       |      |  |      |      |
| ъ                                                                        | Temperature – 12                                                                                                                                                                                                                                                                                                                                    | 2 F (50 C)   | Loads only <sup>5</sup> |                 | (N/mm²)             | (8.4)                       | (8.6)                       | (8.3)                       | (8.1)                       |      |  |      |      |
| I                                                                        | Reduction Factor fo                                                                                                                                                                                                                                                                                                                                 | or Seismic T | ension                  | <i>α</i> N,seis | -                   | 0.94                        | 0.93                        | 0.91                        | 0.88                        |      |  |      |      |
| S                                                                        | Dry Holes                                                                                                                                                                                                                                                                                                                                           | Continuo     | Continuous Inspection   |                 | -                   | 0.                          | 65                          | 0.55                        | 0.45                        |      |  |      |      |
| actor                                                                    | in Concrete                                                                                                                                                                                                                                                                                                                                         | Periodi      | c Inspection            | Ød              | -                   | 0.                          | 65                          | 0.55                        | 0.45                        |      |  |      |      |
| n Fa<br>ible<br>iditic                                                   | Water Saturated<br>Holes                                                                                                                                                                                                                                                                                                                            | Continuo     | us Inspection           | Øws             | -                   |                             | 0.                          | 65                          |                             |      |  |      |      |
| th Reduction F<br>for Permissible<br>allation Conditi                    | in Concrete                                                                                                                                                                                                                                                                                                                                         | Periodi      | Periodic Inspection     |                 | Periodic Inspection |                             |                             |                             | -                           | 0.65 |  | 0.55 | 0.45 |
| Red<br>Perr<br>tion                                                      | Water-filled                                                                                                                                                                                                                                                                                                                                        | Continuo     | us Inspection           | 4               | -                   | 0.45                        |                             |                             |                             |      |  |      |      |
| gth F<br>for I<br>talla                                                  | in Concrete         Periodic Inspe           Water Saturated<br>Holes         Continuous Insp<br>Periodic Inspe           Water-filled<br>Holes         Periodic Inspe           Water-filled<br>Holes         Continuous Insp<br>Periodic Inspe           Water-filled<br>Holes         Periodic Inspe           Underwater         Periodic Inspe |              | c Inspection            | $\phi_{wf}$     | -                   |                             | 0.                          | 45                          |                             |      |  |      |      |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | Underwater Continuous Inspection                                                                                                                                                                                                                                                                                                                    |              | us Inspection           | 4               | -                   |                             | 0.                          | 55                          |                             |      |  |      |      |
|                                                                          | in Concrete                                                                                                                                                                                                                                                                                                                                         | Periodi      | c Inspection            | Φυw             | -                   |                             | 0.                          | 55                          |                             |      |  |      |      |
| Modifi-<br>cation<br>Factors                                             | Water-filled<br>Holes                                                                                                                                                                                                                                                                                                                               | Continuo     | us Inspection           | V.              | -                   |                             | 1                           | .0                          |                             |      |  |      |      |
| Mo<br>cat<br>Fac                                                         | in Concrete                                                                                                                                                                                                                                                                                                                                         | Periodi      | c Inspection            | K <sub>wf</sub> | -                   | 0.95                        | 0.                          | 97                          | 0.95                        |      |  |      |      |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable.

<sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling.

Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

#### TABLE 36—BOND STRENGTH DESIGN INFORMATION FOR RG M I INTERNAL THREADED (FRACTIONAL) ANCHOR IN HOLES DRILLED WITH A HAMMER AND HOLLOW DRILL BIT <sup>1,2</sup>

|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                    | _               |         | An                          | chor Fractional             | Thread Size (ir             | nch)                        |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------|---------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                                                                          | DESIGN INF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ORMATION           | 1                  | Symbol          | Units   | <sup>3</sup> / <sub>8</sub> | <sup>1</sup> / <sub>2</sub> | <sup>5</sup> / <sub>8</sub> | <sup>3</sup> / <sub>4</sub> |
|                                                                          | <b>Fuch a due</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                    | 4               | in.     | 3.54                        | 4.92                        | 6.30                        | 7.87                        |
|                                                                          | Embedme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ent Depth          |                    | h <sub>ef</sub> | (mm)    | (90)                        | (125)                       | (160)                       | (200)                       |
| lth                                                                      | Maximum Sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | With Sustained     |                 | psi     | 2,005                       | 1,950                       | 1,855                       | 1,750                       |
| Characteristic Bond Strength<br>in Uncracked Concrete                    | Temperature = 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Loads <sup>4</sup> |                 | (N/mm²) | (13.8)                      | (13.4)                      | (12.8)                      | (12.1)                      |
| d St<br>onci                                                             | Maximum Lor<br>Temperature = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Short Term         |                 | psi     | 2,510                       | 2,435                       | 2,320                       | 2,190                       |
| aracteristic Bond Strenç<br>in Uncracked Concrete                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 F (43 C)        | Loads only⁵        | _               | (N/mm²) | (17.3)                      | (16.8)                      | (16.0)                      | (15.1)                      |
| stic<br>acke                                                             | Maximum Sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rt Tarm            | With Sustained     | Tk,uncr         | psi     | 1,530                       | 1,485                       | 1,415                       | 1,335                       |
| cteri                                                                    | Temperature = 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Loads <sup>4</sup> |                 | (N/mm²) | (10.6)                      | (10.2)                      | (9.8)                       | (9.2)                       |
| iara<br>in L                                                             | Maximum Lor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | Short Term         |                 | psi     | 2,510                       | 2,435                       | 2,320                       | 2,190                       |
| చ                                                                        | Temperature = 122°F (50°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | Loads only⁵        |                 | (N/mm²) | (17.3)                      | (16.8)                      | (16.0)                      | (15.1)                      |
| lth                                                                      | Mauinaum Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>4</b>           | With Sustained     |                 | psi     | 1,310                       | 1,290                       | 1,275                       | 1,275                       |
| renç                                                                     | Maximum Short Term<br>Temperature = 162°F (72°C),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Loads <sup>4</sup> |                    | (N/mm²)         | (9.0)   | (8.9)                       | (8.8)                       | (8.8)                       |                             |
| St St                                                                    | Maximum Lor<br>Temperature = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Short Term         |                 | psi     | 1,640                       | 1,610                       | 1,595                       | 1,595                       |
| Bon<br>I Co                                                              | Temperature - To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19 T (43 C)        | Loads only⁵        | Tk,cr           | (N/mm²) | (11.3)                      | (11.1)                      | (11.0)                      | (11.0)                      |
| stic<br>ckec                                                             | Maximum Sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ort Torm           | With Sustained     |                 | psi     | 1,000                       | 980                         | 975                         | 975                         |
| cteri<br>Cra                                                             | Temperature = 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Loads <sup>4</sup> |                 | (N/mm²) | (6.9)                       | (6.8)                       | (6.7)                       | (6.7)                       |
| lara<br>in                                                               | Maximum Lor<br>Temperature = 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Short Term         |                 | psi     | 1,640                       | 1,610                       | 1,595                       | 1,595                       |
| Ċ                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .2 F (30 C)        | Loads only⁵        |                 | (N/mm²) | (11.3)                      | (11.1)                      | (11.0)                      | (11.0)                      |
| I                                                                        | Reduction Factor for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or Seismic T       | ension             | <i>α</i> N,seis | -       | 0.94                        | 0.93                        | 0.91                        | 0.88                        |
| actors                                                                   | Dry Holes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Continuo           | us Inspection      | <i>A</i> .      | -       |                             | 0.65                        |                             | 0.55                        |
| uction F<br>nissible<br>Conditi                                          | Dry Holes<br>algisision<br>to Dry Holes<br>in Concrete<br>United to Dry Holes<br>in Concrete<br>United to Dry Holes<br>United to |                    | c Inspection       | $\phi_{ m d}$   | -       |                             | 0.65                        |                             | 0.55                        |
| Strength Reduction Factors<br>for Permissible<br>Installation Conditions | Water Saturated<br>Holes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Continuo           | us Inspection      | 4               | -       |                             | 0.0                         | 65                          |                             |
| Streng<br>1<br>Insta                                                     | in Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Periodio           | c Inspection       | Øws             | -       | 0.65                        |                             |                             |                             |

For **SI:** 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Characteristic bond strength values correspond to concrete compressive strength  $f_c = 2,500$  psi (17.2 MPa). For uncracked concrete compressive strength  $f_c$  between 2,500 psi (17.2 MPa) and 8,000 psi (55,2 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1], the tabulated characteristic bond strength may be increased by factor of  $(f_c / 2,500)^{0.1}$  [for SI:  $(f_c / 17.2)^{0.1}$ ]. See Section 4.1.4 of this report.

<sup>2</sup>Lightweight concrete may be used by applying a reduction factor as given in ACI 318-19 17.2.4 or ACI 318-14 17.2.6, as applicable. <sup>3</sup>Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling.

Long term concrete temperatures are roughly constant over significant periods of time.

<sup>4</sup>Characteristic bond strengths are for sustained loads including dead and live loads.

### TABLE 37—DEVELOPMENT LENGTH FOR EU METRIC REINFORCING BARS<sup>1, 2, 3, 4, 5, 6</sup>

|                           | DEOK                                                                                                                                                                                           |                                                                                 | Symbol         | Unite  |         |         | I       | Rebar size | •       |         |         |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------|--------|---------|---------|---------|------------|---------|---------|---------|
|                           | DESIG                                                                                                                                                                                          | GN INFORMATION                                                                  | Symbol         | Units  | 10      | 12      | 16      | 20         | 25      | 28      | 32      |
|                           | Non                                                                                                                                                                                            | ninal Bar Diameter                                                              | d <sub>b</sub> | mm     | 10      | 12      | 16      | 20         | 25      | 28      | 32      |
|                           | Nominal Dai Diameter                                                                                                                                                                           |                                                                                 | Ub             | (in.)  | (0.39)  | (0.47)  | (0.63)  | (0.79)     | (0.98)  | (1.10)  | (1.26)  |
|                           | Bar effective cross-sectional area                                                                                                                                                             |                                                                                 | Δ              | mm²    | 78.5    | 113.0   | 201.0   | 314.0      | 491.0   | 616.0   | 804.0   |
|                           |                                                                                                                                                                                                |                                                                                 | Ase            | (in.²) | (0.122) | (0.175) | (0.312) | (0.487)    | (0.761) | (0.955) | (1.246) |
| ngth                      | Concrete Compressive                                                                                                                                                                           |                                                                                 |                | mm     | 348     | 418     | 557     | 870        | 1,088   | 1,218   | 1,392   |
| ment le<br>for            | B500B                                                                                                                                                                                          | f' <sub>c</sub> = 2,500 psi (17.2 MPa)<br>(normal weight concrete) <sup>3</sup> | ,              | (in.)  | (13.7)  | (16.4)  | (21.9)  | (34.3)     | (42.8)  | (48.0)  | (54.8)  |
| Development length<br>for | DIN 488                                                                                                                                                                                        | Concrete Compressive<br>Strength                                                | I <sub>d</sub> | mm     | 305     | 330     | 440     | 688        | 860     | 963     | 1,101   |
| Dev                       | $ \begin{array}{c} \begin{array}{c} \text{B500B} \\ \end{array} \end{array} \begin{array}{c} \text{f}_{c} = 4,000 \text{ psi} (27.6 \text{ MPa}) \\ (normal weight concrete)^{3} \end{array} $ |                                                                                 |                | (in.)  | (12.0)  | (13.0)  | (17.3)  | (27.1)     | (33.9)  | (37.9)  | (43.3)  |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

<sup>1</sup>Development lengths valid for static, wind and seismic loads (SDC A and B)

<sup>2</sup>Development lengths in SDC C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18 and section 4.2.4. of this report.

<sup>3</sup>For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-19 25.4.2.5 or ACI 318-14 25.4.2.4, as applicable, are met to permit  $\lambda > 0.75$ 

 $\left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5, \, \psi_t = 1.0, \, \psi_e = 1.0, \, \psi_s = 0.8 \text{ for } d_b \le 20 \text{ mm}, \, \psi_s = 1.0 \text{ for } d_b > 20 \text{ mm}$ 

<sup>5</sup>Minimum f'<sub>c</sub> of 24 MPa is required under ADIBC Appendix L, Section 5.1.1

<sup>6</sup>Calculations may be performed for other steel grades per ACI 318-14 and ACI 318-19 Chapter 25

### TABLE 38—DEVELOPMENT LENGTH FOR U.S. CUSTOMARY UNIT REINFORCING BARS<sup>1, 2, 3, 4, 5, 6</sup>

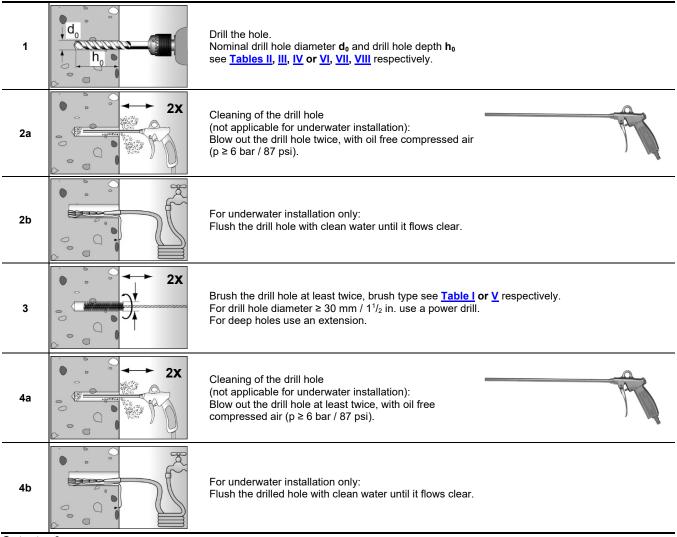
|                           | DESIGN INFORMATION               |                                                                                       |        | Unito |                 |                             |                 | F       | Rebar size                  | )       |         |         |           |    |      |     |      |      |      |      |      |      |      |      |
|---------------------------|----------------------------------|---------------------------------------------------------------------------------------|--------|-------|-----------------|-----------------------------|-----------------|---------|-----------------------------|---------|---------|---------|-----------|----|------|-----|------|------|------|------|------|------|------|------|
|                           | DESIGN INFO                      | JRMATION                                                                              | Symbol | Units | #3              | #4                          | #5              | #6      | #7                          | #8      | #9      | #10     | #11       |    |      |     |      |      |      |      |      |      |      |      |
| No                        | minal rainfarai                  | ng har diamatar                                                                       | db     | in.   | <sup>3</sup> /8 | <sup>1</sup> / <sub>2</sub> | <sup>5</sup> /8 | 3/4     | <sup>7</sup> / <sub>8</sub> | 1       | 1.128   | 1.270   | 1.410     |    |      |     |      |      |      |      |      |      |      |      |
| INO                       | Nominal reinforcing bar diameter |                                                                                       |        | (mm)  | (9.5)           | (12.7)                      | (15.9)          | (19.1)  | (22.2)                      | (25.4)  | (28.7)  | (32.3)  | (35.8)    |    |      |     |      |      |      |      |      |      |      |      |
|                           | Nominal bar area                 |                                                                                       |        | in.²  | 0.11            | 0.20                        | 0.31            | 0.44    | 0.60                        | 0.79    | 1.00    | 1.27    | 1.56      |    |      |     |      |      |      |      |      |      |      |      |
|                           |                                  |                                                                                       |        | (mm²) | (71.0)          | (129.0)                     | (199.0)         | (284.0) | (387.0)                     | (510.0) | (645.0) | (819.0) | (1,006.0) |    |      |     |      |      |      |      |      |      |      |      |
|                           | ASTM<br>A615                     | Concrete                                                                              |        | in.   | 12.0            | 12.0                        | 12.0            | 14.4    | 21.0                        | 24.0    | 27.1    | 30.5    | 33.8      |    |      |     |      |      |      |      |      |      |      |      |
|                           | Grade 40                         | Compressive<br>Strength<br>f <sub>c</sub> = 2,500 psi<br>(17.2 MPa)<br>(normal weight |        | (mm)  | (305)           | (305)                       | (305)           | (366)   | (533)                       | (610)   | (688)   | (774)   | (860)     |    |      |     |      |      |      |      |      |      |      |      |
| ngth                      | ASTM<br>A615 / A706              |                                                                                       |        | in.   | 12.0            | 14.4                        | 18.0            | 21.6    | 31.5                        | 36.0    | 40.6    | 45.7    | 50.8      |    |      |     |      |      |      |      |      |      |      |      |
| Development length<br>for | Grade 60                         | concrete) <sup>3</sup>                                                                | la     | (mm)  | (305)           | (366)                       | (457)           | (549)   | (800)                       | (914)   | (1,031) | (1,161) | (1,289)   |    |      |     |      |      |      |      |      |      |      |      |
| elopm<br>fe               | ASTM<br>A615                     | Concrete                                                                              |        | Id    | ld              | Id                          | Id              | Id      | 14                          | Ia      | Ia      | Id      | ld        | Id | - Ia | in. | 12.0 | 12.0 | 12.0 | 12.0 | 16.6 | 19.0 | 21.4 | 24.1 |
| Dev                       | Grade 40                         | Compressive<br>Strength                                                               |        | (mm)  | (305)           | (305)                       | (305)           | (305)   | (422)                       | (482)   | (544)   | (612)   | (680)     |    |      |     |      |      |      |      |      |      |      |      |
|                           | ASTM<br>A615 / A706              | f <sub>c</sub> = 4,000 psi<br>(27.6 MPa)<br>(normal weight                            |        | in.   | 12.0            | 12.0                        | 14.2            | 17.1    | 24.9                        | 28.5    | 32.1    | 36.1    | 40.1      |    |      |     |      |      |      |      |      |      |      |      |
|                           | Grade 60                         | concrete) <sup>3</sup>                                                                |        | (mm)  | (305)           | (305)                       | (361)           | (434)   | (633)                       | (723)   | (815)   | (918)   | (1019)    |    |      |     |      |      |      |      |      |      |      |      |

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi.

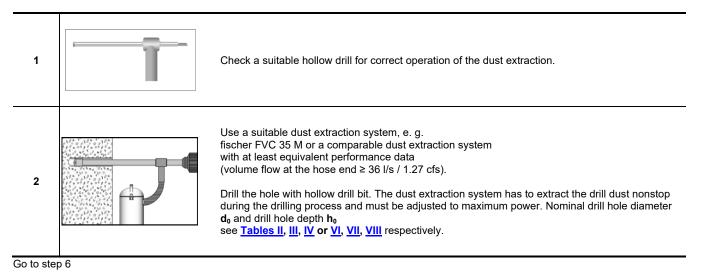
<sup>1</sup>Development lengths valid for static, wind and seismic loads (SDC A and B)

<sup>3</sup>For sand-lightweight concrete, increase development length by 33%, unless the provisions of ACI 318-19 25.4.2.5 or ACI 318-14 25.4.2.4, as applicable, are met to permit  $\lambda > 0.75$ 

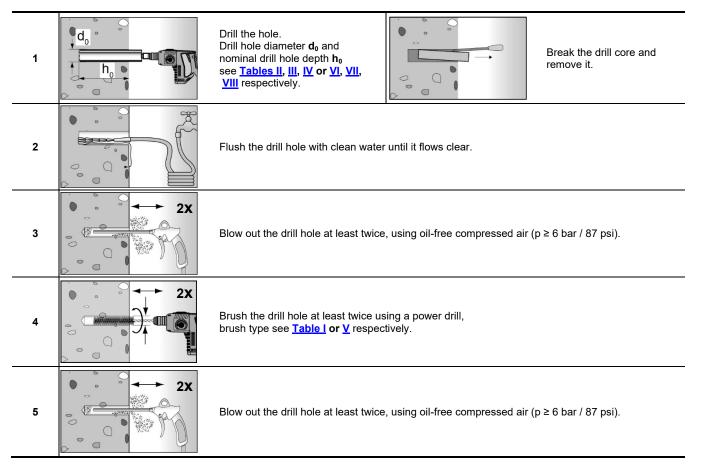

 $\binom{c_b+k_{tr}}{d_b} = 2.5, \ \psi_t = 1.0, \ \psi_e = 1.0, \ \psi_s = 0.8 \ \text{for } d_b \le \#6, \ \psi_s = 1.0 \ \text{for } d_b > \#6$ 

<sup>5</sup>Minimum f'<sub>c</sub> of 24 MPa is required under ADIBC Appendix L, Section 5.1.1

<sup>6</sup>Calculations may be performed for other steel grades per ACI 318-14 and ACI 318-19 Chapter 25


<sup>&</sup>lt;sup>2</sup>Development lengths in SDC C through F must comply with ACI 318-19 and ACI 318-14 Chapter 18, as applicable, and section 4.2.4. of this report

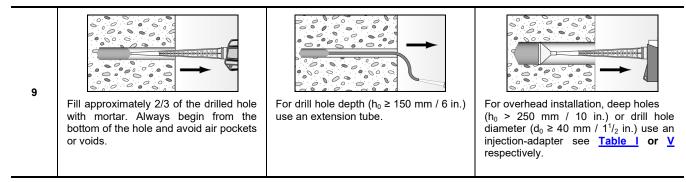
### Drilling and cleaning the hole (hammer drilling with standard drill bit)



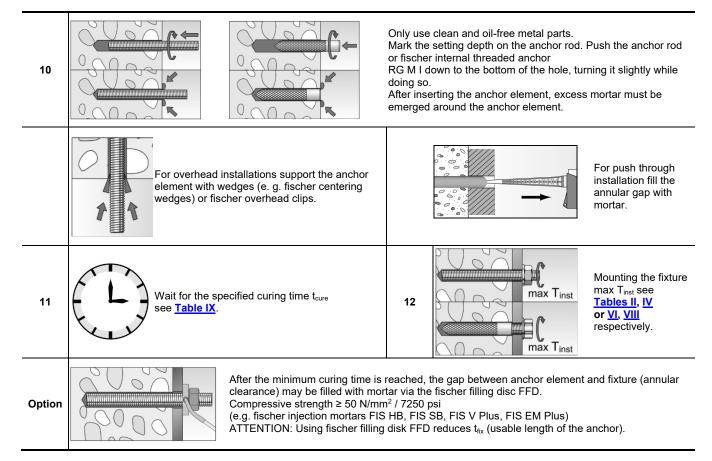

Go to step 6

Drilling and cleaning the hole (hammer drilling with hollow drill bit)




### Drilling and cleaning the hole (wet drilling with diamond drill bit)




### Preparing the cartridge

| 6 |            | Remove the sealing cap.<br>Screw on the static mixer<br>(the spiral in the static mixer n | nust be clearly visible).                                                                                                                      |
|---|------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 | Tischer cz |                                                                                           | Place the cartridge into the dispenser.                                                                                                        |
| 8 | X          | X                                                                                         | Extrude approximately 10 cm / 4 in. of material out until the resin is evenly grey in colour. Do not inject mortar that is not uniformly grey. |

### Injection of the mortar



### Installation of anchor rods or fischer internal threaded anchor



### Page 51 of 58

### Installation reinforcing bars

| 10 | Only use clean and oil-free reinforcing bars. Mark the setting depth. Turn while using force to push the reinforcement bar into the filled hole up to the setting depth mark. |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole.                                                                       |
| 11 | Wait for the specified curing time t <sub>cure</sub> see<br>Table IX.                                                                                                         |

### Table I. Drill hole diameter / Accessories for metric sizes

| Drill       | bit       | Rods      | Rebar     | Internal<br>rods | Brush    |           | Injection adapter |        |
|-------------|-----------|-----------|-----------|------------------|----------|-----------|-------------------|--------|
| Ø<br>[inch] | Ø<br>[mm] | Ø<br>[mm] | Ø<br>[mm] | Ø<br>[mm]        | Туре     | Item. No. | Size              | Color  |
| 3/8         | 10        | M8        | -         | -                | BS10     | 78178     | -                 | -      |
| 7/16        | 12        | M10       | -         | -                | BS12     | 78179     | 12                | nature |
| 9/16        | 14        | M12       | 10        | RG M8 I          | BS14     | 78180     | 14                | blue   |
| 5/8         | 16        | -         | 12        | -                | BS 16/18 | 78181     | 16                | red    |
| 3/4         | 18        | M16       | -         | RG M10 I         | BS 16/18 | 78181     | 18                | yellow |
| 13/16       | 20        | -         | 16        | RG M12 I         | BS 20    | 52277     | 20                | green  |
| 1           | 24        | M20       | -         | RG M16 I         | BS 24    | 78182     | 24                | brown  |
| 1           | 25        | -         | 20        | -                | BS 25    | 97806     | 25                | black  |
| 1 1/8       | 28        | M24       | -         | -                | BS 28    | 78183     | 28                | blue   |
| 1 1/4       | 30        | M27       | 25        | -                | BS 35    | 78184     | 30                | grey   |
| 1 1/4       | 32        | -         | -         | RG M20 I         | BS 35    | 78184     | 30                | grey   |
| 1 3/8       | 35        | M30       | 28        | -                | BS 35    | 78184     | 35                | brown  |
| 1 1/2       | 40        | -         | 32        | -                | BSB 40   | 505061    | 40                | red    |

### Table II. Metric threaded rods

| da   |      | d <sub>0</sub> | h    | ef,min | h <sub>ef</sub> | ,max   | h <sub>min</sub>               |                                | h <sub>min</sub> |        | $s_{min} = c_{min}$ |           | ma | ix T <sub>inst</sub> |
|------|------|----------------|------|--------|-----------------|--------|--------------------------------|--------------------------------|------------------|--------|---------------------|-----------|----|----------------------|
| [mm] | [mm] | [inch]         | [mm] | [inch] | [mm]            | [inch] | [mm]                           | [inch]                         | [mm]             | [inch] | [Nm]                | [ft · lb] |    |                      |
| M8   | 10   | 3/8            | 60   | 2,36   | 160             | 6,30   | 1                              | 1                              | 40               | 1,57   | 10                  | 7         |    |                      |
| M10  | 12   | 7/16           | 60   | 2,36   | 200             | 7,87   | h <sub>ef</sub> + 30<br>(≥100) | h <sub>ef</sub> + 1,25<br>(≥4) | 45               | 1,77   | 20                  | 15        |    |                      |
| M12  | 14   | 9/16           | 70   | 2,76   | 240             | 9,45   | (=100)                         | (=+)                           | 55               | 2,17   | 40                  | 30        |    |                      |
| M16  | 18   | 3/4            | 80   | 3,15   | 320             | 12,60  |                                |                                | 65               | 2,56   | 60                  | 44        |    |                      |
| M20  | 24   | 1              | 90   | 3,54   | 400             | 15,75  |                                |                                | 85               | 3,35   | 120                 | 89        |    |                      |
| M24  | 28   | 1 1/8          | 96   | 3,78   | 480             | 18,90  | $h_{ef}$ + 2d <sub>0</sub>     | $h_{ef}$ + 2 $d_0$             | 105              | 4,13   | 150                 | 111       |    |                      |
| M27  | 30   | 1 1/4          | 108  | 4,25   | 540             | 21,26  |                                |                                | 120              | 4,72   | 200                 | 148       |    |                      |
| M30  | 35   | 1 3/8          | 120  | 4,72   | 600             | 23,62  |                                |                                | 140              | 5,51   | 300                 | 221       |    |                      |

### Table III. Metric reinforcing bars

| $d_a / d_b$ |      | d <sub>0</sub> | h    | əf,min | h <sub>ef</sub> | h <sub>ef,max</sub> h <sub>min</sub> |                                   | min                               | $s_{min} = c_{min}$ |        | max T <sub>inst</sub> <sup>1</sup> |           |
|-------------|------|----------------|------|--------|-----------------|--------------------------------------|-----------------------------------|-----------------------------------|---------------------|--------|------------------------------------|-----------|
| [mm]        | [mm] | [inch]         | [mm] | [inch] | [mm]            | [inch]                               | [mm]                              | [inch]                            | [mm]                | [inch] | [Nm]                               | [ft · lb] |
| 10          | 14   | 9/16           | 60   | 2,36   | 200             | 7,87                                 | h <sub>ef</sub> + 30<br>(≥100)    | h <sub>ef</sub> + 1,25<br>(≥4)    | 45                  | 1,77   | 30                                 | 22        |
| 12          | 16   | 5/8            | 70   | 2,76   | 240             | 9,45                                 |                                   |                                   | 55                  | 2,17   | 50                                 | 37        |
| 16          | 20   | 13/16          | 80   | 3,15   | 320             | 12,60                                |                                   |                                   | 65                  | 2,56   | 110                                | 81        |
| 20          | 25   | 1              | 90   | 3,54   | 400             | 15,75                                | h <sub>ef</sub> + 2d <sub>0</sub> | h <sub>ef</sub> + 2d <sub>0</sub> | 85                  | 3,35   | 190                                | 140       |
| 25          | 30   | 1 1/4          | 100  | 3,94   | 500             | 19,69                                |                                   |                                   | 120                 | 4,72   | 280                                | 207       |
| 28          | 35   | 1 3/8          | 112  | 4,41   | 560             | 22,05                                |                                   |                                   | 140                 | 5,51   | 350                                | 258       |
| 32          | 40   | 1 1/2          | 128  | 5,04   | 640             | 25,20                                |                                   |                                   | 160                 | 6,30   | 430                                | 317       |

<sup>1</sup>Torque moment only required when using threaded reinforcing bars to resist seismic loading

### Table IV. Metric internal threaded anchor

| d <sub>e</sub> |      | da     |      | d <sub>0</sub> | h    | l <sub>ef</sub> |      | h <sub>min</sub> | s <sub>min</sub> = | C <sub>min</sub> | ma   | x T <sub>inst</sub> |
|----------------|------|--------|------|----------------|------|-----------------|------|------------------|--------------------|------------------|------|---------------------|
| [mm]           | [mm] | [inch] | [mm] | [inch]         | [mm] | [inch]          | [mm] | [inch]           | [mm]               | [inch]           | [Nm] | [ft · lb]           |
| RG M8 I        | 12   | 1/2    | 14   | 9/16           | 90   | 3,54            | 120  | 4,72             | 55                 | 2,17             | 10   | 7                   |
| RG M10 I       | 16   | 5/8    | 18   | 3/4            | 90   | 3,54            | 125  | 4,92             | 65                 | 2,56             | 20   | 15                  |
| RG M12 I       | 18   | 11/16  | 20   | 13/16          | 125  | 4,92            | 165  | 6,50             | 75                 | 2,95             | 40   | 30                  |
| RG M16 I       | 22   | 7/8    | 24   | 1              | 160  | 6,30            | 205  | 8,07             | 95                 | 3,74             | 80   | 59                  |
| RG M20 I       | 28   | 1 1/8  | 32   | 1 1/4          | 200  | 7,87            | 260  | 10,24            | 125                | 4,92             | 120  | 89                  |

### Table V. Drill hole diameter / Accessories for fractional sizes

| Drill       | bit       | Rods      | Rebar     | Internal<br>anchor | Brush    |           |      |        | Injection adapter |  |
|-------------|-----------|-----------|-----------|--------------------|----------|-----------|------|--------|-------------------|--|
| Ø<br>[inch] | Ø<br>[mm] | Ø<br>[mm] | Ø<br>[mm] | Ø<br>[mm]          | Туре     | Item. No. | Size | Color  |                   |  |
| 7/16        | 12        | 3/8       | -         | -                  | BS12     | 78179     | -    | -      |                   |  |
| 1/2         | 14        | -         | #3        | -                  | BS14     | 78180     | 12   | nature |                   |  |
| 9/16        | 15        | 1/2       | -         | -                  | BS14     | 78180     | 14   | blue   |                   |  |
| 5/8         | 16        | -         | #4        | -                  | BS 16/18 | 78181     | 16   | red    |                   |  |
| 3/4         | 18        | 5/8       | -         | RG MI 3/8          | BS 16/18 | 78181     | 18   | yellow |                   |  |
| 13/16       | 20        | -         | #5        | RG MI 1/2          | BS 20    | 52277     | 20   | green  |                   |  |
| 7/8         | 22        | 3/4       | #6        | -                  | BS 20    | 52277     | 20   | green  |                   |  |
| 1           | 25        | 7/8       | -         | RG MI 5/8          | BS 25    | 97806     | 25   | black  |                   |  |
| 1 1/8       | 28        | 1         | #7        | -                  | BS 28    | 78183     | 28   | blue   |                   |  |
| 1 1/4       | 32        | 1 1/8     | #8        | RG MI 3/4          | BS 35    | 78184     | 30   | grey   |                   |  |
| 1 3/8       | 35        | 1 1/4     | #9        | -                  | BS 35    | 78184     | 35   | brown  |                   |  |
| 1 1/2       | 40        | -         | #10       | -                  | BSB 40   | 505061    | 40   | red    |                   |  |
| 1 3/4       | 45        | -         | #11       | -                  | BSB 45   | 506254    | 45   | yellow |                   |  |

### Table VI. Fractional threaded rods

| da     | c    | l <sub>o</sub> | h    | ef,min | h <sub>ef</sub> | h <sub>ef,max</sub> h <sub>min</sub> |                            | min                               | $s_{min} = c_{min}$ |        | max T <sub>inst</sub> |           |
|--------|------|----------------|------|--------|-----------------|--------------------------------------|----------------------------|-----------------------------------|---------------------|--------|-----------------------|-----------|
| [inch] | [mm] | [inch]         | [mm] | [inch] | [mm]            | [inch]                               | [mm]                       | [inch]                            | [mm]                | [inch] | [Nm]                  | [ft · lb] |
| 3/8    | 12   | 7/16           | 60   | 2 3/8  | 191             | 7 1/2                                | hef + 30                   | hef + 1,25                        | 42.5                | 1.67   | 20                    | 15        |
| 1/2    | 15   | 9/16           | 70   | 2 3/4  | 254             | 10                                   | (≥100)                     | (≥4)                              | 57.5                | 2.26   | 41                    | 30        |
| 5/8    | 18   | 3/4            | 79   | 3 1/8  | 318             | 12 1/2                               |                            |                                   | 65                  | 2.56   | 68                    | 50        |
| 3/4    | 22   | 7/8            | 89   | 3 1/2  | 381             | 15                                   |                            |                                   | 80                  | 3.15   | 122                   | 90        |
| 7/8    | 25   | 1              | 89   | 3 1/2  | 445             | 17 1/2                               | h . 0d                     |                                   | 95                  | 3.74   | 136                   | 100       |
| 1      | 28   | 1 1/8          | 102  | 4      | 508             | 20                                   | $h_{ef}$ + 2d <sub>0</sub> | h <sub>ef</sub> + 2d <sub>0</sub> | 110                 | 4.33   | 183                   | 135       |
| 1 1/8  | 32   | 1 1/4          | 114  | 4 1/2  | 572             | 22 1/2                               |                            |                                   | 135                 | 5.31   | 244                   | 180       |
| 1 1/4  | 35   | 1 3/8          | 127  | 5      | 635             | 25                                   |                            |                                   | 160                 | 6.30   | 325                   | 240       |

### Table VII. Fractional reinforcing bars

| $d_a / d_b$ | c    | ł <sub>o</sub> | h    | ef,min | h <sub>ef</sub> | h <sub>ef,max</sub> h <sub>min</sub> |                                | min                            | $s_{min} = c_{min}$ |        | max T <sub>inst</sub> <sup>1</sup> |           |
|-------------|------|----------------|------|--------|-----------------|--------------------------------------|--------------------------------|--------------------------------|---------------------|--------|------------------------------------|-----------|
| [-]         | [mm] | [inch]         | [mm] | [inch] | [mm]            | [inch]                               | [mm]                           | [inch]                         | [mm]                | [inch] | [Nm]                               | [ft · lb] |
| #3          | 14   | 1/2            | 60   | 2 3/8  | 191             | 7 1/2                                | h <sub>ef</sub> + 30<br>(≥100) | h <sub>ef</sub> + 1,25<br>(≥4) | 43                  | 1.69   | 30                                 | 22        |
| #4          | 16   | 5/8            | 70   | 2 3/4  | 254             | 10                                   |                                |                                | 58                  | 2.28   | 60                                 | 44        |
| #5          | 20   | 13/16          | 79   | 3 1/8  | 318             | 12 1/2                               |                                |                                | 65                  | 2.56   | 110                                | 81        |
| #6          | 22   | 7/8            | 89   | 3 1/2  | 381             | 15                                   |                                |                                | 80                  | 3.15   | 175                                | 129       |
| #7          | 28   | 1 1/8          | 89   | 3 1/2  | 445             | 17 1/2                               | $h_{ef}$ + 2 $d_0$             | $h_{ef}$ + 2 $d_0$             | 95                  | 3.74   | 240                                | 177       |
| #8          | 32   | 1 1/4          | 102  | 4      | 508             | 20                                   |                                |                                | 110                 | 4.33   | 320                                | 236       |
| #9          | 35   | 1 3/8          | 114  | 4 1/2  | 572             | 22 1/2                               |                                |                                | 130                 | 5.12   | 380                                | 280       |
| #10         | 40   | 1 1/2          | 127  | 5      | 635             | 25                                   |                                |                                | 160                 | 6.30   | 450                                | 332       |
| #11         | 45   | 1 3/4          | 140  | 5 1/2  | 699             | 27 1/2                               |                                |                                | 175                 | 6.89   | 450                                | 332       |

<sup>1</sup>Torque moment only required when using threaded reinforcing bars to resist seismic loading

### Table VIII. Fractional internal threaded anchor

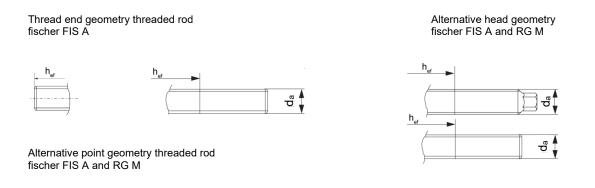

| d <sub>e</sub> | c    | la     |      | d <sub>0</sub> | h    | ef     |      | h <sub>min</sub> | S <sub>min</sub> = | = C <sub>min</sub> | ma   | x T <sub>inst</sub> |
|----------------|------|--------|------|----------------|------|--------|------|------------------|--------------------|--------------------|------|---------------------|
| [inch]         | [mm] | [inch] | [mm] | [inch]         | [mm] | [inch] | [mm] | [inch]           | [mm]               | [inch]             | [Nm] | [ft · lb]           |
| RG MI 3/8      | 16   | 5/8    | 18   | 3/4            | 90   | 3,54   | 125  | 4,92             | 65                 | 2,56               | 20   | 15                  |
| RG MI 1/2      | 18   | 11/16  | 20   | 13/16          | 125  | 4,92   | 165  | 6,50             | 75                 | 2,95               | 40   | 30                  |
| RG MI 5/8      | 22   | 7/8    | 24   | 1              | 160  | 6,30   | 205  | 8,07             | 95                 | 3,74               | 80   | 59                  |
| RG MI 3/4      | 28   | 1 1/8  | 32   | 1 1/4          | 200  | 7,87   | 260  | 10,24            | 125                | 4,92               | 120  | 89                  |

Table IX. Processing and curing times

|      |      | Temp | erature Ran | ge1  |     | Working time /<br>processing time | Curing time       |  |  |  |
|------|------|------|-------------|------|-----|-----------------------------------|-------------------|--|--|--|
|      |      |      |             |      |     | t <sub>work</sub>                 | t <sub>cure</sub> |  |  |  |
|      | [°C] |      |             | [°F] |     | [min]                             | [h]               |  |  |  |
| -5   | to   | 0    | 23          | to   | 32  | 240                               | 200               |  |  |  |
| > 0  | to   | 5    | > 32        | to   | 41  | 150                               | 90                |  |  |  |
| > 5  | to   | 10   | > 41        | to   | 50  | 120                               | 40                |  |  |  |
| > 10 | to   | 20   | > 50        | to   | 68  | 30                                | 22                |  |  |  |
| > 20 | to   | 30   | > 68        | to   | 86  | 14                                | 10                |  |  |  |
| > 30 | to   | 40   | > 86        | to   | 104 | 7                                 | 5                 |  |  |  |

<sup>1</sup>Minimal cartridge temperature +5 °C / +41 °F

FIGURE 6—FIS EM PLUS INSTALLATION INFORMATION (Continued)



h<sub>ef</sub>

### Marking (on random place) fischer anchor rod:

| Steel zinc plated PC <sup>1</sup> 8.8                 | • or + | Steel hot-dip PC <sup>1</sup> 8.8                     | • |
|-------------------------------------------------------|--------|-------------------------------------------------------|---|
| High corrosion resistant steel HCR PC <sup>1</sup> 50 | •      | High corrosion resistant steel HCR PC <sup>1</sup> 70 | - |
| High corrosion resistant steel HCR PC <sup>1</sup> 80 | (      | Stainless steel R property class 50                   | ~ |
| Stainless steel R property class 80                   | *      |                                                       |   |

Alternatively: Colour coding according to DIN 976-1:2016

### FIGURE 7—FISCHER THREADED RODS FIS A AND RGM

<sup>1</sup>PC = property class

|                                       | <b>JC-ES</b> Most Widely Accepted and Trusted   |                                            |
|---------------------------------------|-------------------------------------------------|--------------------------------------------|
|                                       | System FIS EM Plus 300, 390 S, 585 S and 1500 S |                                            |
|                                       |                                                 |                                            |
|                                       | anananananananananan                            |                                            |
| Threaded Rod                          | Reinforcing Bar                                 | Internal Threaded Anchor<br>fischer RG M I |
| Static Mixer e.g. fischer FIS MR Plus | Injection Adapters                              | Extension Tube                             |
|                                       |                                                 |                                            |

Page 55 of 58

fischer 📼

Dispenser e.g fischer FIS DM S Pro



Dust extraction system e.g. fischer FVC 35 M

Hollow Drill Bit e.g fischer FHD

FIGURE 8—FIS EM PLUS ANCHORING SYSTEM, STEEL ELEMENTS AND ACCESSORIES



### **ICC-ES Evaluation Report**

### ESR-1990 LABC and LARC Supplement

Reissued September 2023

Revised April 2025

This report is subject to renewal September 2025.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

### **REPORT HOLDER:**

fischerwerke GmbH & Co. KG

### **EVALUATION SUBJECT:**

# fischer FIS EM PLUS ADHESIVE ANCHORING SYSTEM AND POST INSTALLED REINFORCING BAR CONNECTIONS FOR CRACKED AND UNCRACKED CONCRETE

### 1.0 REPORT PURPOSE AND SCOPE

### Purpose:

The purpose of this evaluation report supplement is to indicate that the fischer FIS EM Plus Adhesive Anchoring System and Post-Installed Reinforcing Bar System in cracked and uncracked concrete, described in ICC-ES evaluation report <u>ESR-1990</u>, have also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

### Applicable code editions:

- 2023 City of Los Angeles Building Code (LABC)
- 2023 City of Los Angeles Residential Code (LARC)

### 2.0 CONCLUSIONS

The the fischer FIS EM Plus Adhesive Anchoring System and Post-Installed Reinforcing Bar System in cracked and uncracked concrete, described in Sections 2.0 through 7.0 of the evaluation report <u>ESR-1990</u>, comply with the LABC Chapter 19, and the LARC, and are subject to the conditions of use described in this supplement.

### 3.0 CONDITIONS OF USE

The fischer FIS EM Plus Adhesive Anchoring System and Post-Installed Reinforcing Bar System in cracked and uncracked concrete described in this evaluation report must comply with all of the following conditions:

- All applicable sections in the evaluation report ESR-1990.
- The design, installation, conditions of use and labeling of the anchors are in accordance with the 2021 *International Building Code*<sup>®</sup> (IBC) and 2021 *International Residential Code*<sup>®</sup> (IRC) provisions, as applicable, noted in the evaluation report <u>ESR-1990</u>.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16, 17 and, 19, as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.
- The allowable and strength design values listed in the evaluation report and tables are for the connection of the adhesive anchors or post-installed reinforcing bars to the concrete. The connection between the adhesive anchors or post-installed reinforcing bars and the connected members shall be checked for capacity (which may govern).
- For use in wall anchorage assemblies to flexible diaphragm applications, anchors shall be designed per the requirements of City of Los Angeles Information Bulletin P/BC 2020-071.

This supplement expires concurrently with the evaluation report, reissued September 2023 and revised April 2025.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.





### **ICC-ES Evaluation Report**

## ESR-1990 CBC and CRC Supplement

Reissued September 2023 Revised April 2025 This report is subject to renewal September 2025.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00— CONCRETE Section: 03 16 00— Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

**REPORT HOLDER:** 

fischerwerke GmbH & Co. KG

**EVALUATION SUBJECT:** 

fischer FIS EM PLUS ADHESIVE ANCHORING SYSTEM AND POST INSTALLED REINFORCING BAR CONNECTIONS FOR CRACKED AND UNCRACKED CONCRETE

### 1.0 REPORT PURPOSE AND SCOPE

### Purpose:

The purpose of this evaluation report supplement is to indicate that the fischer FIS EM Plus Adhesive Anchoring System and Post Installed Reinforcing Bar Connections in cracked and uncracked concrete, described in ICC-ES evaluation report ESR-1990, have also been evaluated for compliance with the code(*s*) noted below.

### Applicable code editions:

### 2022 California Building Code (CBC)

For evaluation of applicable chapters adopted by the California Office of Statewide Health Planning and Development (OSHPD) AKA: California Department of Health Care Access and Information (HCAI) and Division of State Architect (DSA), see Sections 2.1.1 and 2.1.2 below.

■ 2022 California Residential Code (CRC)

### 2.0 CONCLUSIONS

### 2.1 CBC:

The fischer FIS EM Plus Adhesive Anchoring System and Post Installed Reinforcing Bar Connections in cracked and uncracked concrete, described in Sections 2.0 through 7.0 of the evaluation report ESR-1990, comply with CBC Chapter 19, provided the design and installation are in accordance with the 2021 *International Building Code*<sup>®</sup> (IBC) provisions noted in the evaluation report and the additional requirements of CBC Chapters 16, 17 and 19, as applicable.

### 2.1.1 OSHPD:

The applicable OSHPD Sections and Chapters of the CBC are beyond the scope of this supplement.

### 2.1.2 DSA:

The applicable DSA Sections and Chapters of the CBC are beyond the scope of this supplement.

### 2.2 CRC:

The fischer FIS EM Plus Adhesive Anchoring System and Post Installed Reinforcing Bar Connections in cracked and uncracked concrete, described in Sections 2.0 through 7.0 of the evaluation report ESR-1990, comply with CRC Section R301.1.3, provided the design and installation are in accordance with the 2021 *International Building Code*<sup>®</sup> (IBC) provisions noted in the evaluation report and the additional requirements of CBC Chapters 16, 17 and 19, as applicable.

This supplement expires concurrently with the evaluation report, reissued September 2023 and revised April 2025.

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.





### **ICC-ES Evaluation Report**

### **ESR-1990 FBC Supplement**

Reissued September 2023

Revised April 2025

This report is subject to renewal September 2025.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS Section: 05 05 19—Post-Installed Concrete Anchors

**REPORT HOLDER:** 

fischerwerke GmbH & Co. KG

**EVALUATION SUBJECT:** 

fischer FIS EM PLUS ADHESIVE ANCHORING SYSTEM AND POST INSTALLED REINFORCING BAR CONNECTIONS FOR CRACKED AND UNCRACKED CONCRETE

### 1.0 REPORT PURPOSE AND SCOPE

### Purpose:

The purpose of this evaluation report supplement is to indicate that the fischer FIS EM Plus Adhesive Anchoring System and Post-Installed Reinforcing Bar System, described in ICC-ES evaluation report ESR-1990, has also been evaluated for compliance with the codes noted below.

### Applicable code editions:

- 2023 Florida Building Code—Building
- 2023 Florida Building Code—Residential

### 2.0 CONCLUSIONS

The fischer FIS EM Adhesive Anchoring System and Post-Installed Reinforcing Bar System, described in Sections 2.0 through 7.0 of ICC-ES evaluation report ESR-1990, complies with the *Florida Building Code—Building* and the *Florida Building Code—Residential*. The design requirements must be determined in accordance with the *Florida Building Code—Building Code—Building* or the *Florida Building Code—Residential*, as applicable. The installation requirements noted in ICC-ES evaluation report ESR-1990 for the 2021 International Building Code<sup>®</sup> meet the requirements of the *Florida Building Code—Building* or the *Florida Building Code—Residential*, as applicable.

Use of the fischer FIS EM Plus Adhesive Anchoring System and Post-Installed Reinforcing Bar System has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the *Florida Building Code—Building* and the *Florida Building Code—Building* and the following condition:

a) For connections subject to uplift, the connection must be designed for no less than 700 pounds (3114 N).

For products falling under Florida Rule 61G20-3, verification that the report holder's quality-assurance program is audited by a quality-assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued September 2023 and revised April 2025.

