DIVISION: 06 00 00—WOOD, PLASTICS AND COMPOSITES
Section: 06 17 53—Shop-Fabricated Wood Trusses

REPORT HOLDER:
EAGLE METAL PRODUCTS

EVALUATION SUBJECT:
EAGLE METAL PRODUCTS EAGLE 20, EAGLE 18, EAGLE 16, EAGLE 20HS, EAGLE 18HS AND EAGLE 18 HINGE PLATE CONNECTOR TRUSS METAL CONNECTOR PLATES

1.0 EVALUATION SCOPE

Compliance with the following codes:

For evaluation for compliance with codes adopted by the Los Angeles Department of Building and Safety (LADBS), see ESR-1082 LABC and LARC Supplement.

Property evaluated:
Structural

2.0 USES

The Eagle Metal Products Eagle 20, Eagle 18, Eagle 16, Eagle 20HS, Eagle 18HS and Eagle 18 Hinge Plate Connector truss metal connector plates are used as joint connectors of light-framed wood roof and floor trusses.

3.0 DESCRIPTION

3.1 Eagle 20:

Eagle 20 truss metal connector plates are manufactured from minimum No. 20 gage [0.0356 inch (0.904 mm) total thickness], ASTM A653, SS designation, Grade 40, structural steel with a G60 galvanization coating [0.0005 inch (0.013 mm) thickness each side] with base-metal thickness of 0.0346 inch (0.878 mm). Each plate has 3/8-inch-long (9.5 mm) teeth that are stamped in pairs and bent at right angles from the face of the plate. The teeth are spaced 1 inch (25.4 mm) on center along the length, and 1/4 inch (6.4 mm) on center along the width, and are staggered 3/32 inch (2.38 mm) off center. Each plate has eight teeth per square inch (1.24 teeth/cm²). See Figure 2 for details.

3.2 Eagle 18:

Eagle 18 truss metal connector plates are manufactured from minimum No.18 gage [0.0466 inch (1.184 mm) total thickness], ASTM A653, SS designation, Grade 40, structural steel with a minimum G60 galvanization coating [0.0005 inch (0.013 mm) thickness each side] with base-metal thickness of 0.0456 inch (1.158 mm). Eagle 18 truss metal connector plates are stamped identically to the Eagle 20 truss metal connector plates. See Figure 2 for details.

3.3 Eagle 16:

Eagle 16 truss metal connector plates are manufactured from minimum No. 16 gage [0.0575 inch (1.461 mm) total thickness], ASTM A653, SS designation, Grade 40, structural steel with a G60 galvanization coating [0.0005 inch (0.013 mm) thickness each side] with base-metal thickness of 0.0565 inch (1.435 mm). Each plate is stamped with slightly staggered rows of slots, punched to form two teeth in each slot, with one tooth slightly longer than the other. Teeth are 7/16 inch (11.1 mm) and 7/16 inch (7.9 mm) long, and are formed with a slight twist that alternates (twists in the opposite direction) every third row. Slots are 7/32 inch (4 mm) in width and 7/16 inch (11.1 mm) in length. The slots are spaced every 1 inch (25.4 mm) along the plate length and every 1/8 inch (8.5 mm) along the plate width. Every third row of slots is staggered 1/8 inch (3.2 mm). Each plate has six teeth per square inch of plate area (0.93 tooth/cm²). See Figure 3 for details.

3.4 Eagle 20HS:

Eagle 20HS truss metal connector plates are manufactured from minimum No. 20 gage [0.0356 inch (0.904 mm) total thickness], ASTM A653, HSLAS designation, Grade 60, structural steel with a G60 galvanization coating [0.0005 inch (0.013 mm) thickness each side] with base-metal thickness of 0.0346 inch (0.878 mm). Each plate has 3/8-inch-long (9.5 mm) teeth that are stamped in pairs and bent at right angles from the face of the plate. The teeth are spaced 1 inch (25.4 mm) on center along the length, and 1/4 inch (6.4 mm) on center along the width, and are staggered 7/32 inch (2.4 mm) off center. Each plate has six teeth per square inch (1.24 teeth/cm²), and every fourth row is removed. See Figure 4 for details.

3.5 Eagle 18HS:

Eagle 18HS truss metal connector plates are manufactured from minimum No. 18 gage [0.0466 inch (1.184 mm) total thickness], ASTM A653, HSLAS designation, Grade 60, structural steel with a G60 galvanization coating [0.0005 inch (0.013 mm) thickness
each side] with base-metal thickness of 0.0456 inch (1.158 mm). Eagle 18HS truss metal connector plates are stamped identically to the Eagle 20 truss metal connector plates. See Figure 2 for details.

3.6 Eagle 18 Hinge Plate Connector:
The Eagle 18 Hinge Plate Connector is manufactured from two metal connector plates, stamped from minimum No. 18 gage [0.0466 inch (1.184 mm) total thickness], ASTM A653, SS designation, Grade 40, structural steel with a G60 galvanization coating [0.0005 inch (0.013 mm) thickness each side] with base-metal thickness of 0.0456 inch (1.158 mm). The two plates are overlapped by 1/2 inches (38.1 mm) and factory-connected by a grommet placed in a pre-punched hole in each plate. Overall, the hinge plate measures 2 inches wide by 7 1/8 inches long (51 mm by 181 mm). Each metal connector plate section is composed of 36 individual teeth for a total of 72 teeth per hinge plate connector. See Figure 1 for details.

4.0 INSTALLATION
4.1 General:
All truss metal connector plates must be pressed into the wood for the full depth of their teeth by hydraulic-platen embedment presses, multiple roller presses that use partial embedment followed by full-embedment rollers, or combinations of partial embedment roller presses and hydraulic-platen presses that feed trusses into a stationary finish roller press. Trusses must be assembled within the tolerances provided by the Truss Plate Institute (TPI) Quality Criteria for Metal Plate Connected Wood Trusses, shown in Chapter 4 Metal Connector Plate Manufacturing of ANSI/TPI 1-2014, National Design Standard for Metal Plate Connected Wood Truss Construction.

4.2 Allowable Design Values:
4.2.1 Eagle 20, Eagle 18, Eagle 16, Eagle 20HS and Eagle 18HS: Allowable design values for these Eagle Metal Products truss metal connector plates to be used in the design of metal-plate-connected wood roof and floor trusses are shown in Tables 1 and 2. Allowable design values are applicable when the connection is made with identical plates on opposite sides of the joint.

4.2.2 Eagle 18 Hinge Plate Connector: The allowable design values of Eagle 18 Hinge Plate Connectors in shear, tension and compression are shown in Table 3. Imposed forces at the joint and within the truss containing the joint must be determined using a structural model with a pin at the hinge joint location. Allowable design values are applicable when the connection is made with a 1-inch (25.4 mm), or smaller, gap between the two wood members at the connection. The design load due to combined shear and axial loads must not exceed the allowable load using the Hankinson formula as follows:

\[F_0 \leq P_0 \]

where:

\[F_0 = \text{Imposed combined shear and axial load, lb}, \]

\[= (F_s^2 + F_a^{2.5})^{0.5}. \]

\[P_0 = \text{Allowable combined shear and axial load, lb}, \]

\[= (P_s \times X P_a)/(\left| P_s \times (\sin \theta)^2 + P_a \times (\cos \theta)^2 \right|). \]

\[F_a = \text{Imposed axial force, lb}. \]

\[F_v = \text{Imposed shear force, lb}. \]

\[P_a = \text{Allowable axial force, lb. (in compression or tension corresponding to imposed axial force)}. \]

\[P_v = \text{Allowable shear load, lb}. \]

\[\Theta = \text{Angle between } F_0 \text{ and the length of the plate}. \]

5.0 CONDITIONS OF USE
The Eagle Metal Products truss metal connector plates described in this report comply with, or are suitable alternatives to what is specified in, those codes specifically listed in Section 1.0 of this report, subject to the following conditions:

5.1 This evaluation report and the installation instructions, when required by the code official, must be submitted at the time of permit application. In the event of a conflict between the manufacturer’s published installation instructions and this report, this report governs.

5.2 Each application for a building permit using these truss metal plate connectors must be accompanied by calculations, details and other documentation showing that the design, manufacture, and proposed installation conforms with the requirements of the applicable code. The calculations must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.

5.3 This report establishes plate design values only. For items not covered by this report, such as truss design, fabrication, quality assurance and special inspection, refer to ANSI/TPI 1, engineering drawings and the applicable code.

5.4 The design values used in the design of trusses using Eagle Metal Products truss metal connector plates must not exceed those listed in Tables 1, 2 and 3. Load combination reductions must be in accordance with the applicable code.

5.5 All lumber used in the fabrication of trusses using Eagle Metal Products wood truss metal connector plates must be graded in compliance with the applicable code and must have a moisture content not to exceed 19 percent at the time of assembly. Wet service factors from ANSI/TPI 1 must be applied to the table values when the lumber moisture content exceeds 19 percent. Allowable design values shown in the tables of this report are not applicable to metal connector plates embedded in either fire-retardant-treated lumber or preservative-treated lumber.

5.6 Truss metal connector plates must be installed in pairs on opposite faces of truss members.

5.7 Galvanized G60 truss metal connector plates subject to corrosive environments must be protected in accordance with ANSI/TPI 1.

5.8 The following conditions apply to the Eagle 18 Hinge Plate Connector only:

5.8.1 Allowable load values for the Eagle 18 Hinge Plate Connectors are applicable to hinge plate pairs installed on opposite faces and positioned in the 180-degree (unbent) position in the final installation of the truss.

5.8.2 The allowable compression load given in Table 3 is valid for applications where sheathing is attached to the truss chord members containing the metal hinge plate connectors, and lateral translation across the joint is inhibited by the sheathing being installed continuously across the joint as prescribed by code, or by other means acceptable to the code official. Eagle 18 Hinge Plate Connectors must not be used to transfer any loads in a direction perpendicular to
the plane of the truss, such as for design of load
transfer at joints of unblocked diaphragms.

5.8.3 Due to the rotation provided at the joint of the Eagle
18 Hinge Plate Connector, the truss design must be
modeled with a pin at the hinge joint location. In the
final installed condition, shear loads must be applied
within the plane of the hinge plate, at a
90-degree angle to the long axis.

5.8.4 Design of diaphragms with trusses manufactured
with the Eagle 18 Hinge Plate Connector is outside
the scope of this report.

5.8.5 Allowable design values given in Table 3 for Eagle
18 Hinge Plate Connectors are applicable when the
connection is made with a 1-inch (25.4 mm), or
smaller, gap between the two wood members at the
connection.

5.8.6 Use of the Eagle 18 Hinge Plate Connector is
limited to prefabricated trusses. Field installation is
prohibited.

5.9 This evaluation report is limited to the evaluation of
connection capacity of the Eagle Metal Products truss
metal connector plates covered in this report. The
design, manufacture, and installation of trusses
employing the truss metal connector plates have not
been evaluated and must comply with IBC Section
2303.4 (Section 2303.4.2 under the 2006 IBC) or IRC
Sections R502.11 and R802.10.

6.0 EVIDENCE SUBMITTED

6.1 Data in accordance with ANSI/TPI 1-2014, National
Design Standard for Metal Plate Connected Wood
Truss Construction.

6.2 Manufacturer’s descriptive literature.

6.3 Quality documentation.

6.4 Data in accordance with the ICC-ES Acceptance
Criteria for Metal Hinge Plate Connectors for Wood
Trusses (AC283), dated November 2015, editorially
revised April 2018.

7.0 IDENTIFICATION

Each Eagle Metal Products Eagle 20, Eagle 18, Eagle 16,
Eagle 20HS, Eagle 18HS and Eagle 18 Hinge Plate
Connector truss metal connector plate 3 inches (76.2 mm)
in width or wider, and 25 percent of plates less than
3 inches (76.2mm) in width, are identified by an embossed
“EAGLE20” for the Eagle 20, “EAGLE18” for the Eagle 18,
or “EAGLE16” for the Eagle 16, “EAGLE20HS” for the
Eagle 20HS, “EAGLE18HS” for the Eagle 18HS and
“EAGLE18” for the Eagle 18 Hinge Plate Connector; and/or
the same designations in a fast-drying permanent ink
application. Additionally, boxes containing the Eagle 20,
Eagle 18, Eagle 16, Eagle 20HS, Eagle 18HS and Eagle
18 Hinge Plate Connector truss metal connector plates
must bear the Eagle Metal Products name, the name of the
connector (Eagle 20, Eagle 18, Eagle 16, Eagle 20HS,
Eagle 18HS or Eagle 18 Hinge Plate Connector) and the
evaluation report number (ESR-1082).

7.1 The report holder’s contact information is as follows:

EAGLE METAL PRODUCTS
12300 FORD ROAD, SUITE 110
DALLAS, TEXAS 75234
(972) 350-9800
www.eaglemetal.com
TABLE 1 - LATERAL RESISTANCE ALLOWABLE DESIGN VALUES [psi/PLATE] 1, 2, 3

<table>
<thead>
<tr>
<th>LUMBER SPECIES</th>
<th>SG</th>
<th>AA</th>
<th>EA</th>
<th>AE</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOUTHERN PINE</td>
<td>0.55</td>
<td>222</td>
<td>185</td>
<td>160</td>
<td>168</td>
</tr>
<tr>
<td>SPRUCE-PINE-FIR</td>
<td>0.42</td>
<td>170</td>
<td>141</td>
<td>122</td>
<td>128</td>
</tr>
<tr>
<td>HEM-FIR</td>
<td>0.43</td>
<td>170</td>
<td>141</td>
<td>122</td>
<td>128</td>
</tr>
<tr>
<td>DOUGLAS-FIR-LARCH</td>
<td>0.50</td>
<td>222</td>
<td>185</td>
<td>160</td>
<td>168</td>
</tr>
<tr>
<td>EAGLE20, EAGLE18, & EAGLE18HS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOUTHERN PINE</td>
<td>0.55</td>
<td>167</td>
<td>153</td>
<td>133</td>
<td>115</td>
</tr>
<tr>
<td>SPRUCE-PINE-FIR</td>
<td>0.42</td>
<td>117</td>
<td>109</td>
<td>105</td>
<td>111</td>
</tr>
<tr>
<td>HEM-FIR</td>
<td>0.43</td>
<td>123</td>
<td>102</td>
<td>90</td>
<td>97</td>
</tr>
<tr>
<td>DOUGLAS-FIR-LARCH</td>
<td>0.50</td>
<td>167</td>
<td>153</td>
<td>131</td>
<td>142</td>
</tr>
<tr>
<td>EAGLE16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOUTHERN PINE</td>
<td>0.55</td>
<td>167</td>
<td>139</td>
<td>120</td>
<td>126</td>
</tr>
<tr>
<td>SPRUCE-PINE-FIR</td>
<td>0.42</td>
<td>127</td>
<td>106</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>HEM-FIR</td>
<td>0.43</td>
<td>127</td>
<td>106</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>DOUGLAS-FIR-LARCH</td>
<td>0.50</td>
<td>167</td>
<td>139</td>
<td>120</td>
<td>126</td>
</tr>
<tr>
<td>EAGLE20HS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 psi = 6.9 kPa.

1. Tooth holding units = psi for a single plate (lb/in²/PLATE). To achieve values, plates must be installed on opposite sides of joint.
2. AA = plate parallel to load, wood grain parallel to load.
 EA = plate perpendicular to load, wood grain parallel to load.
 AE = plate parallel to load, wood grain perpendicular to load.
 EE = Plate perpendicular to load, wood grain perpendicular to load.
3. All truss plates are pressed into the wood for the full depth of their teeth by hydraulic-platen embedment presses, multiple roller presses that use partial embedment followed by full-embedment rollers, or combinations of partial embedment roller presses and hydraulic-platen presses that feed trusses into a stationary finish roller press.

TABLE 2 - EFFECTIVE TENSION & SHEAR ALLOWABLE DESIGN VALUES

<table>
<thead>
<tr>
<th></th>
<th>EAGLE20</th>
<th>EAGLE18</th>
<th>EAGLE16</th>
<th>EAGLE20HS</th>
<th>EAGLE18HS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX TENSION (^\circ), (0^\circ)</td>
<td>0.60</td>
<td>1.050</td>
<td>0.61</td>
<td>1.395</td>
<td>0.60</td>
</tr>
<tr>
<td>MAX TENSION (^\circ), (90^\circ)</td>
<td>0.47</td>
<td>0.822</td>
<td>0.47</td>
<td>1.085</td>
<td>0.52</td>
</tr>
<tr>
<td>MIN TENSION (^\circ), (0^\circ)</td>
<td>0.48</td>
<td>0.836</td>
<td>0.48</td>
<td>1.104</td>
<td>NA</td>
</tr>
<tr>
<td>MIN TENSION (^\circ), (90^\circ)</td>
<td>0.57</td>
<td>0.989</td>
<td>0.57</td>
<td>1.305</td>
<td>NA</td>
</tr>
<tr>
<td>SHEAR, (0^\circ)</td>
<td>0.62</td>
<td>0.718</td>
<td>0.62</td>
<td>0.946</td>
<td>0.53</td>
</tr>
<tr>
<td>SHEAR, (30^\circ)</td>
<td>0.67</td>
<td>0.786</td>
<td>0.67</td>
<td>1.036</td>
<td>0.61</td>
</tr>
<tr>
<td>SHEAR, (60^\circ)</td>
<td>0.62</td>
<td>0.956</td>
<td>0.62</td>
<td>1.260</td>
<td>0.73</td>
</tr>
<tr>
<td>SHEAR, (90^\circ)</td>
<td>0.54</td>
<td>0.632</td>
<td>0.54</td>
<td>0.833</td>
<td>0.44</td>
</tr>
<tr>
<td>SHEAR, (120^\circ)</td>
<td>0.42</td>
<td>0.491</td>
<td>0.42</td>
<td>0.647</td>
<td>0.49</td>
</tr>
<tr>
<td>SHEAR, (150^\circ)</td>
<td>0.51</td>
<td>0.592</td>
<td>0.51</td>
<td>0.780</td>
<td>0.44</td>
</tr>
</tbody>
</table>

For SI: 1 lb/in² = 0.18N/mm²

1. Max values permissible when steel is over the joint. Steel over the joint is defined as the centerline of the solid steel is within 1/16" of the joint centerline for the 90 degree orientation and the centerline of the solid steel is within 1/4" of the joint centerline for the 0 degree orientation. Min values used when steel is not over the joint.
2. ER = Efficiency Ratio

TABLE 3 - EAGLE HINGE PLATE ALLOWABLE DESIGN VALUES

<table>
<thead>
<tr>
<th>SPECIMEN LOAD TYPE</th>
<th>ALLOWABLE LOAD [lb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEAR</td>
<td>696</td>
</tr>
<tr>
<td>AXIAL TENSION</td>
<td>970</td>
</tr>
<tr>
<td>AXIAL COMPRESSION</td>
<td>970</td>
</tr>
</tbody>
</table>

For SI: 1 lb = 4.45 N.

1. Values were obtained using SPF lumber with a SG = 0.42
FIGURE 1 - EAGLE18 HINGE CONNECTOR PLATE

FIGURE 2 - EAGLE20, EAGLE18, EAGLE18H5 CONNECTOR PLATES

FIGURE 3 - EAGLE16 CONNECTOR PLATE

FIGURE 4 - EAGLE20H5 CONNECTOR PLATE
1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that Eagle Metal Products Eagle 20, Eagle 18, Eagle 16, Eagle 20HS, Eagle 18HS and Eagle 18 Hinge Plate Connector Truss Metal Connector Plates, described in ICC-ES master evaluation report ESR-1082, have also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:
- 2017 City of Los Angeles Building Code (LABC)
- 2017 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The Eagle Metal Products Eagle 20, Eagle 18, Eagle 16, Eagle 20HS, Eagle 18HS and Eagle 18 Hinge Plate Connector Truss Metal Connector Plates, described in Sections 2.0 through 7.0 of the master evaluation report ESR-1082, comply with LABC Chapter 23, and LARC, and are subjected to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The Eagle Metal Products Eagle 20, Eagle 18, Eagle 16, Eagle 20HS, Eagle 18HS and Eagle 18 Hinge Plate Connector Truss Metal Connector Plates described in this evaluation report must comply with all of the following conditions:

- All applicable sections in the master evaluation report ESR-1082.
- The design, installation, conditions of use and identification are in accordance with the 2015 International Building Code® (2015 IBC) provisions noted in the master evaluation report ESR-1082.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, and LARC Section R802, as applicable.
- The design, manufacture, and installation of trusses employing the truss metal connector plates must comply with applicable LABC and ANSI/TPI 1 provisions, such as TPI 1 Chapter 8 provisions for heel joints and provisions for loads applied at an angle with respect to lumber grain.
- Metal connector plate teeth with 1/2 inch of the ends of truss wood members must be considered ineffective to carry any load.

This supplement expires concurrently with the evaluation report, reissued February 2020.
1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that Eagle Metal Products Eagle 20, Eagle 18, Eagle 16, Eagle 20HS, Eagle 18HS, and Eagle 18 Hinge Plate Connector Truss Metal Connector Plates, recognized in ICC-ES master evaluation report ESR-1082, have also been evaluated for compliance with the code noted below.

Applicable code edition:
2016 California Building Code (CBC)

2.0 CONCLUSIONS

The Eagle Metal Products Eagle 20, Eagle 18, Eagle 16, Eagle 20HS, Eagle 18HS and Eagle 18 Hinge Plate Connector Truss Metal Connector Plates, described in Sections 2.0 through 7.0 of the master evaluation report ESR-1082, comply with CBC Chapter 23, provided the design and installation are in accordance with the 2015 International Building Code® (IBC) provisions noted in the master report and the additional requirements of CBC Chapters 16, 16A, 17, 17A and 23, as applicable.

This supplement expires concurrently with the evaluation report, reissued February 2020.
DIVISION: 06 00 00—WOOD, PLASTICS AND COMPOSITES
Section: 06 17 53—Shop-Fabricated Wood Trusses

REPORT HOLDER:

EAGLE METAL PRODUCTS
12300 FORD ROAD, SUITE 110
DALLAS, TEXAS 75234
(972) 350-9800
www.eaglemetal.com

EVALUATION SUBJECT:

EAGLE METAL PRODUCTS EAGLE 20, EAGLE 18, EAGLE 16, EAGLE 20HS, EAGLE 18HS AND EAGLE 18 HINGE PLATE CONNECTOR TRUSS METAL CONNECTOR PLATES

1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that Eagle Metal Products Eagle 20, Eagle 18, Eagle 16, Eagle 20HS, Eagle 18HS and Eagle 18 Metal Hinge Plate Connector Truss Metal Connector Plates, recognized in ICC-ES master evaluation report ESR-1082, have also been evaluated for compliance with the codes noted below.

Applicable code editions:
- 2017 Florida Building Code—Building
- 2017 Florida Building Code—Residential

2.0 CONCLUSIONS

The Eagle Metal Products Eagle 20, Eagle 18, Eagle 16, Eagle 20HS, Eagle 18HS and Eagle 18 Metal Hinge Plate Connector Truss Metal Connector Plates, described in Sections 2.0 through 7.0 of the master evaluation report ESR-1082, comply with the Florida Building Code—Building and the Florida Building Code—Residential, provided the design and installation are in accordance with the 2015 International Building Code® (IBC) provisions noted in the master report.

Use of the Eagle Metal Products Eagle 20, Eagle 18, Eagle 16, Eagle 20HS, Eagle 18HS and Eagle 18 Metal Hinge Plate Connector Truss Metal Connector Plates has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the Florida Building Code—Building and the Florida Building Code—Residential.

For products falling under Florida Rule 9N-3, verification that the report holder’s quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued February 2020.