1.0 EVALUATION SCOPE

Compliance with the following codes:

For evaluation for compliance with codes adopted by Los Angeles Department of Building and Safety (LADBS), see ESR-1988 LABC and LARC Supplement.

Property evaluated:

Structural

2.0 USES

MiTek metal truss connector plates are used as joint connector components of light wood-frame trusses.

3.0 DESCRIPTION

3.1 MiTek TL18 and MT18:

Models TL18 and MT18 metal truss connector plates are manufactured from minimum No. 18 gage [0.0466 inch total thickness (1.18 mm)], ASTM A653 SS, Grade 40 steel, with a G60 galvanization coating [0.0005 inch thickness on each side (0.013 mm)] and having a base-metal thickness of 0.0456 inch (1.16 mm). The plates have teeth \(\frac{3}{8} \) inch long (9.5 mm), punched in pairs formed at right angles to the face of the parent metal so that two teeth per hole occur along the length. The spacing along the longitudinal direction of each punched slot is 1 inch (25.4 mm) on center. The transverse centerlines of adjacent slots are staggered 0.10 inch (2.54 mm). The distance between longitudinal centerlines of the slots is 0.25 inch (6.35 mm). There are eight teeth per square inch (645 mm\(^2\)) of surface area. Plates are available in \(\frac{1}{2} \)-inch-width (12.7 mm) increments, up to 12 inches (304.8 mm), and lengthwise in 1-inch (25.4 mm) multiples. See Figure 1 for details.

3.2 MiTek MT18HS™:

Model MT18HS™ metal truss connector plates are manufactured from minimum No. 18 gage [0.0466 inch total thickness (1.18 mm)], ASTM A653, Grade 60, high-strength, low-alloy steel (HSLAS) with a G60 galvanization coating [0.0005 inch thickness on each side (0.013 mm)] and having a base-metal thickness of 0.0456 inch (1.16 mm). The plate has teeth \(\frac{3}{8} \) inch long (9.5 mm), punched in pairs formed at right angles to the face of the parent metal so that two teeth per hole occur along the length. The spacing along the longitudinal direction of each punched slot is 1 inch (25.4 mm) on center. The transverse centerlines of adjacent slots are staggered 0.10 inch (2.54 mm). The distance between longitudinal centerlines of the slots is 0.25 inch (6.35 mm). There are eight teeth per square inch (645 mm\(^2\)) of surface area. Plates are available in \(\frac{1}{2} \)-inch-width (12.7 mm) increments, up to 12 inches (304.8 mm), and lengthwise in 1-inch (25.4 mm) multiples. See Figure 1 for details.

3.3 MiTek M18SHS™:

Model M18SHS™ metal truss connector plates are manufactured from minimum No. 18 gage [0.0466-inch (1.18 mm) total thickness], hot-dipped galvanized steel that meets the requirements of ASTM A653 SS, Grade 80 steel, with a G60 galvanization coating [0.0005 inch thickness on each side (0.013 mm)] and having a base metal thickness of 0.0456 inch (1.16 mm). The plates have \(\frac{3}{8} \) inch-long (9.5 mm) teeth, punched in pairs formed at right angles to the face of the parent metal so that two teeth per hole occur along the length. The spacing along the longitudinal direction of each punched slot is 1 inch (25.4 mm) on center. The transverse centerlines of adjacent slots are staggered 0.10 inch (2.54 mm). The distance between longitudinal centerlines of slots is 0.25 inch (6.35 mm). There are eight teeth per square inch (645 mm\(^2\)) of surface area. Plates are available in \(\frac{1}{2} \)-inch-width (12.7 mm) increments, up to 12 inches (304.8 mm), and lengthwise in 1-inch (25.4 mm) multiples. See Figure 1 for details.

3.4 MiTek TL20 and MT20™:

Models TL20 and MT20™ metal truss connector plates are manufactured from minimum No. 20 gage [0.0356 inch total thickness (0.9 mm)], ASTM A653 SS, Grade 40 steel, with a G60 galvanization coating [0.0005 inch thickness on each side (0.013 mm)] and having a base-metal thickness of 0.0346 inch (0.88 mm). The plates have teeth \(\frac{3}{8} \) inch (9.5

Copyright © 2020 ICC Evaluation Service, LLC. All rights reserved.
mm) long, punched in pairs formed at right angles to the face of the parent metal so that two teeth per hole occur along the length. The spacing along the longitudinal direction of each punched slot is 1 inch (25.4 mm) on center. The transverse centerlines of adjacent slots are staggered 0.10 inch (2.54 mm). The distance between longitudinal centerlines of the slots is 0.25 inch (6.35 mm). There are eight teeth per square inch (645 mm²) of surface area. Plates are available in 1/2-inch width (12.7 mm) increments, up to 12 inches (304.8 mm), and lengthwise in 1-inch (25.4 mm) multiples. See Figure 1 for details.

4.0 DESIGN AND INSTALLATION

4.1 General:
All MiTek metal truss connector plates are pressed into the wood for the full depth of their teeth by hydraulic-platen embedment presses, multiple roller presses that use partial embedment followed by full-embedment rollers, or combinations of partial embedment roller presses and hydraulic-platen presses that feed trusses into a stationary finish roller press. Trusses must be assembled within the tolerances provided by the Truss Plate Institute’s (TPI) Quality Criteria for the Manufacture of Metal Plate Connected Wood Trusses, shown as Chapter 3 in ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction.

4.2 Allowable Design Values:
Allowable design values for MiTek metal truss connector plates to be used in the design of metal plate connected wood roof and floor trusses are shown in Tables 1 and 2. Allowable design values are applicable when the connection is made with identical plates on opposite sides of the joint. This evaluation report is limited to the evaluation of connection capacity of the MiTek metal truss connector plates listed in this report. The design, manufacture, and installation of trusses employing the truss plates have not been evaluated.

Allowable values shown in Tables 1 and 2 have not been adjusted for metal plate connectors embedded in fire-retardant-treated or preservative-treated lumber. Proper adjustments must be made in accordance with the requirements indicated in a current ICC-ES evaluation report issued to the chemical treatment manufacturer. If the evaluation report does not contain information on the adjustments, the chemical manufacturer must be contacted for this information. Compliance with Section 2304.10.5 of the 2018 and 2015 IBC (Section 2304.9.5 of the 2012, 2009 and 2006 IBC) and Section R317.3 of the 2018, 2015, 2012 and 2009 IRC (Section R319.3 of the 2006 IRC) is also required.

5.0 CONDITIONS OF USE

The MiTek metal truss connector plates described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

5.1 This evaluation report and the manufacturer’s published installation instructions, when required by the code official, must be submitted at the time of permit application. In the event of a conflict between the manufacturer’s published installation instructions and this document, the instructions in this document govern.

5.2 Each application for a building permit, using these truss plate connectors, must be accompanied by documentation showing that the design, manufacture, and proposed installation conform to the requirements of the applicable code.

5.3 This report establishes plate design values only. For items not covered by this report, such as truss design, fabrication, quality assurance and special inspection, refer to ANSI/TPI 1, engineering drawings and the applicable code.

5.4 The design values (lateral resistance values, effective tension strength ratios, and effective shear resistance ratios) used in the design of trusses, using MiTek metal truss connector plates, must not exceed those listed in Tables 1 and 2 of this report. Load combination reductions must be in accordance with the applicable code.

5.5 All lumber used in the fabrication of trusses using MiTek metal truss connector plates must be graded in compliance with the applicable building code, and must have a moisture content not exceeding 19 percent at the time of assembly. Wet service factors from ANSI/TPI 1 Section 6.4 must be applied to the table values when the lumber moisture content exceeds 19 percent.

5.6 Metal truss connector plates must be installed in pairs on opposite faces of truss members.

5.7 Galvanized G60 metal truss plate connectors subject to corrosive environments must be protected in accordance with Section 6.5 of ANSI/TPI 1.

5.8 MiTek metal truss connector plates are manufactured in Hazelwood, Missouri; Tolleson, Arizona; Tampa, Florida; Edenton, North Carolina; and Bradford, Ontario, Canada, under a quality control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

6.2 Manufacturer’s descriptive literature.

6.3 A quality control manual.

7.0 IDENTIFICATION
The MiTek metal truss connector plates are identified by an imprint of the plate name embossed into the surface of the plate (for example, the MT20™ plate is embossed “MT20”). Additionally, boxes containing the connector plates must be labeled with the MiTek name, the metal connector plate model, and the evaluation report number (ESR-1988).
Table 1—Allowable Lateral Resistance Values, Hydraulic-Platen Embedment

<table>
<thead>
<tr>
<th>Lumber Species</th>
<th>SG</th>
<th>AA</th>
<th>EA</th>
<th>AE</th>
<th>EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL18, MT18, MT18HS™, M18SHS™, TL20 and MT20™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas fir-larch</td>
<td>0.49</td>
<td>248</td>
<td>203</td>
<td>170</td>
<td>171</td>
</tr>
<tr>
<td>Hem-fir</td>
<td>0.43</td>
<td>188</td>
<td>159</td>
<td>133</td>
<td>141</td>
</tr>
<tr>
<td>Spruce-pine-fir</td>
<td>0.42</td>
<td>206</td>
<td>162</td>
<td>125</td>
<td>122</td>
</tr>
<tr>
<td>Southern pine</td>
<td>0.55</td>
<td>244</td>
<td>192</td>
<td>171</td>
<td>178</td>
</tr>
</tbody>
</table>

For SI: 1 lb/in² = 6.9 kPa.

Notes:
1. Tooth-holding units = psi for a single plate (double for plates on both faces when applying to area on only one face). To achieve values, plates must be installed on opposite sides of joint.
2. AA = Plate parallel to load, wood grain parallel to load.
3. EA = Plate perpendicular to load, wood grain parallel to load.
4. AE = Plate parallel to load, wood grain perpendicular to load.
5. EE = Plate perpendicular to load, wood grain perpendicular to load.

Table 2—Effective Tension and Shear Resistance Allowable Design Values

<table>
<thead>
<tr>
<th>Property Force Direction</th>
<th>TL18 and MT18</th>
<th>MT18HS™</th>
<th>M18SHS™</th>
<th>TL20 and MT20™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>Pounds/inch/Pair of Connector Plates</td>
<td>Pounds/inch/Pair of Connector Plates</td>
<td>Pounds/inch/Pair of Connector Plates</td>
<td>Pounds/inch/Pair of Connector Plates</td>
</tr>
<tr>
<td>Tension @ 0°</td>
<td>0.5</td>
<td>1149</td>
<td>0.538</td>
<td>1809</td>
</tr>
<tr>
<td>Tension @ 90°</td>
<td>0.52</td>
<td>1208</td>
<td>0.550</td>
<td>1847</td>
</tr>
<tr>
<td>Tension Values in Accordance with Section 5.4.4.2 of TPI-1</td>
<td>(Minimum Net Section over the joint)²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension @ 0° SG=0.42</td>
<td>—</td>
<td>—</td>
<td>0.613</td>
<td>2060</td>
</tr>
<tr>
<td>Tension @ 0° SG=0.50</td>
<td>—</td>
<td>—</td>
<td>0.623</td>
<td>2094</td>
</tr>
<tr>
<td>Shear Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear @ 0°</td>
<td>0.56</td>
<td>874</td>
<td>0.55</td>
<td>1099</td>
</tr>
<tr>
<td>Shear @ 30°</td>
<td>0.66</td>
<td>1023</td>
<td>0.57</td>
<td>1153</td>
</tr>
<tr>
<td>Shear @ 60°</td>
<td>0.83</td>
<td>1283</td>
<td>0.74</td>
<td>1492</td>
</tr>
<tr>
<td>Shear @ 90°</td>
<td>0.49</td>
<td>757</td>
<td>0.52</td>
<td>1052</td>
</tr>
<tr>
<td>Shear @ 120°</td>
<td>0.39</td>
<td>608</td>
<td>0.4</td>
<td>802</td>
</tr>
<tr>
<td>Shear @ 150°</td>
<td>0.45</td>
<td>702</td>
<td>0.37</td>
<td>745</td>
</tr>
</tbody>
</table>

For SI: 1 lb/inch = 0.175 N/mm, 1 inch = 25.4 mm.

Notes:
1. Minimum coated thickness is 0.0356 inch (0.904 mm) for 20 gage, or 0.0466 inch (1.184 mm) for 18 gage. Minimum coating thickness for G60 is 0.0010 inch (0.025 mm) total for both sides in accordance with Section 6.3.4.1.3 of ANSI/TPI 1.
2. Minimum Net Section – A line through the plate’s tooth pattern with the minimum amount of steel for a specified orientation. For these plates, this line passes through a line of holes.
3. Maximum Net Section – A line through the plate’s tooth pattern with the maximum amount of steel for a specified orientation. For these plates, this line passes through a section of the plate with no holes.
FIGURE 1—APPROXIMATE DIMENSIONS OF MITEK CONNECTOR PLATES (inches) (1 inch = 25.4 mm)
DIVISION: 06 00 00—WOOD, PLASTICS, AND COMPOSITES
Section: 06 17 53—Shop-Fabricated Wood Trusses

REPORT HOLDER:

MI TEK® INC.

EVALUATION SUBJECT:

MI TEK METAL TRUSS CONNECTOR PLATES: TL18, MT18, MT18HS™, M18SHS™, TL20 AND MT20

1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that the MiTek Metal Truss Connector Plates: TL18, MT18, MT18HS™, M18SHS™, TL20 and MT20, described in ICC-ES evaluation report ESR-1988, have also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:
- 2020 City of Los Angeles Building Code (LABC)
- 2020 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The MiTek Metal Truss Connector Plates: TL18, MT18, MT18HS™, M18SHS™, TL20 and MT20, described in Sections 2.0 through 7.0 of the evaluation report ESR-1988, comply with the LABC Chapter 23, and the LARC, and are subjected to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The MiTek Metal Truss Connector Plates: TL18, MT18, MT18HS™, M18SHS™, TL20 and MT20 described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report ESR-1988.
- The design, installation, conditions of use and labeling are in accordance with the 2018 International Building Code® (IBC) provisions noted in the evaluation report ESR-1988.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16, 17 and 23, and LARC Section R802, as applicable.
- Metal connector plate teeth with ½ inch of the ends of truss wood members must be considered ineffective to carry any load.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted

This supplement expires concurrently with the evaluation report, reissued December 2018 and revised July 2020.
DIVISION: 06 00 00—WOOD, PLASTICS AND COMPOSITES
Section: 06 17 53—Shop-Fabricated Wood Trusses

REPORT HOLDER:
MITEK® INC.

EVALUATION SUBJECT:
MITEK METAL TRUSS CONNECTOR PLATES: TL18, MT18, MT18HS™, M18SHS™, TL20 AND MT20

1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that MiTek Metal Truss connector plates TL18, MT18, MT18HS™, M18SHS™, TL20 and MT20, recognized in ICC-ES evaluation report ESR-1988, have also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2016 California Building Code (CBC)
- 2016 California Residential Code (CRC)

For evaluation of applicable chapters adopted by the California Office of Statewide Health Planning and Development (OSHPD) and Division of the State Architect (DSA), see Sections 2.1.1 and 2.1.2 below.

2.0 CONCLUSIONS

2.1 CBC:
The MiTek Metal Truss connector plates TL18, MT18, MT18HS™, M18SHS™, TL20 and MT20, described in Sections 2.0 through 7.0 of the evaluation report ESR-1988, comply with CBC Chapter 23, provided the design and installation are in accordance with the 2015 International Building Code® (IBC) provisions noted in the evaluation report and the additional requirements of CBC Chapters 16, 17 and 23, as applicable.

2.1.1 OSHPD:
OSHPD requirements as indicated in the CBC are beyond the scope of this supplement.

2.1.2 DSA:
DSA requirements as indicated in the CBC are beyond the scope of this supplement.

2.2 CRC:
The MiTek Metal Truss connector plates TL18, MT18, MT18HS™, M18SHS™, TL20 and MT20, described in Sections 2.0 through 7.0 of the evaluation report ESR-1988, comply with CRC Sections R502.11 and R802.10, provided the design and installation are in accordance with the 2015 International Residential Code® (IRC) provisions noted in the evaluation report.

This supplement expires concurrently with the evaluation report, reissued December 2018 and revised July 2020.
1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that MiTek Metal Truss Connector Plates TL18, MT18, MT18HS™, M18SHS™, TL20 and MT20, described in ICC-ES evaluation report ESR-1988, have also been evaluated for compliance with the codes noted below.

Applicable code editions:
- 2020 and 2017 Florida Building Code—Building
- 2020 and 2017 Florida Building Code—Residential

2.0 CONCLUSIONS

The MiTek Metal Truss Connector Plates TL18, MT18, MT18HS™, M18SHS™, TL20 and MT20, described in Sections 2.0 through 7.0 of the evaluation report ESR-1988, comply with the Florida Building Code—Building and the Florida Building Code—Residential, provided the design requirements are determined in accordance with the Florida Building Code—Building or the Florida Building Code—Residential, as applicable. The installation requirements noted in ICC-ES evaluation report ESR-1988 for the 2018 and 2015 International Building Code® meet the requirements of the Florida Building Code—Building or the Florida Building Code—Residential, as applicable, with the following condition:

a) Compliance with Section 2304.10.5 of the Florida Building Code—Building and Section R317.3 of the Florida Building Code—Residential is required as described in Section 4.2 of the evaluation report ESR-1988.

Use of the MiTek Metal Truss Connector Plates TL18, MT18, MT18HS™, M18SHS™, TL20 AND MT20 has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the Florida Building Code—Building and the Florida Building Code—Residential with the following condition:

a) For connections subject to uplift, the connection must be designed for no less than 700 pounds (3114 N).

For products falling under Florida Rule 61G20-3, verification that the report holder’s quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report ESR-1988, reissued December 2018 and revised July 2020.