DIVISION: 03 00 00—CONCRETE
Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS
Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:
DEWALT

ADDITIONAL LISTEE:
Powers Fasteners

EVALUATION SUBJECT:
SNAKE+™ ANCHORS IN CRACKED AND UNCRACKED CONCRETE (DEWALT / POWERS)

1.0 EVALUATION SCOPE
Compliance with the following codes:

For evaluation for compliance with codes adopted by Los Angeles Department of Building and Safety (LADBS), see ESR-2272 LABC and LARC Supplement.

Property evaluated:
Structural

2.0 USES
The Snake+ anchor is used as anchorage to resist static, wind and seismic tension and shear loads in cracked and uncracked normal-weight concrete and lightweight concrete having a specified compressive strength, f'_c, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

The 3/8-inch-diameter (9.5 mm) anchors may be installed in the topside of cracked and uncracked normal-weight or sand-lightweight concrete-filled steel deck having a minimum specified compressive strength, f'_c, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

The 3/8-inch- and 1/2-inch-diameter (9.5 mm and 12.7 mm) anchors may be installed in the soffit of cracked and uncracked normal-weight or sand-lightweight concrete-filled steel deck having a minimum specified compressive strength, f'_c, of 3,000 psi (20.7 MPa).

The Snake+ anchors are an alternative to anchors described in Section 1901.3 of 2018 and 2015 IBC, Sections 1908 and 1909 of the 2012 IBC, and Sections 1911 and 1912 of the 2009 IBC. The anchors may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

3.0 DESCRIPTION
3.1 Snake+ Anchors:
Snake+ anchors are one-piece, internally threaded screw anchors which receive threaded steel inserts such as threaded rods and bolts in 3/8-inch and 1/2-inch diameters.

Product names for the report holder and the additional listee are presented in the following table.

<table>
<thead>
<tr>
<th>COMPANY NAME</th>
<th>PRODUCT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEWALT</td>
<td>Snake+</td>
</tr>
<tr>
<td>Powers Fasteners</td>
<td>Snake+</td>
</tr>
</tbody>
</table>

Available nominal sizes are 3/8-inch and 1/2-inch. The anchors are manufactured from carbon steel, which are case hardened and have a minimum 0.0002-inch (5 μm) zinc plating in accordance with ASTM B633. The Snake+ anchor is illustrated in Figure 1.

The anchors are installed in predrilled holes with a powered impact wrench. The threads on the anchor body tap into the sides of the predrilled hole and interlock with the base material during installation.

3.2 Steel Insert Elements:
Threaded steel insert elements must be threaded into the Snake+ Anchors to form a connection. The material properties of the steel insert elements must comply with the minimum specifications as given in Table 2 of this report, or an equivalent.

3.3 Concrete:
Normal-weight and lightweight concrete must comply with Sections 1903 and 1905 of the IBC.

3.4 Steel Deck Panels:
Steel deck panels must comply with the configuration in Figure 4 and 5 and have a minimum base-metal thickness of 0.035 inch (0.89 mm) [No. 20 gage]. Steel must comply with ASTM A653/A653M SS Grade 36, and it must have a minimum yield strength of 36 ksi (248 MPa).

4.0 DESIGN AND INSTALLATION
4.1 Strength Design:
4.1.1 General: Design strength of anchors complying with 2018 and 2015 IBC, as well as Section R301.1.3 of the 2018 and 2015 IRC must be determined in accordance with ACI 318-14 and this report.

Design strength of anchors complying with the 2012 IBC, as well as Section R301.1.3 of the 2012 IRC, must be
determined in accordance with ACI 318-11 Appendix D and this report.

Design strength of anchors complying with the 2009 IBC, as well as Section R301.1.3 of the 2009 IRC, must be determined in accordance with ACI 318-08 Appendix D and this report.

A design example according to the 2018, 2015 and 2012 IBC is given in Figure 6 of this report.

Design parameters are based on the 2018 and 2015 IBC (ACI 318-14) and 2012 IBC (ACI 318-11) unless noted otherwise in Sections 4.1.1 through 4.1.12 of this report.

The strength design of anchors must comply with ACI 318-14 17.3.1 or ACI 318-11 D.4.1, as applicable, except as required in ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable. Strength reduction factors, ϕ, as given in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, and noted in Tables 2 and 3, must be used for load combinations calculated in accordance with Section 1605.2 of the IBC, Section 5.3 of ACI 318-14, or Section 9.2 of ACI 318-11, as applicable. Strength reduction factors, ϕ, in ACI 318-11 D.4.4 must be used for load combinations calculated in accordance with Appendix C of ACI 318-11. Strength reduction factors, ϕ, corresponding to brittle steel elements must be used.

4.1.2 Requirements for Static Steel Strength in Tension, N_{sa}: The nominal static steel strength of a single anchor in tension, N_{sa}, calculated in accordance with ACI 318-14 17.4.1.2 or ACI 318-11 D.5.1.2, as applicable, is given in Table 2 of this report.

4.1.3 Requirements for Static Concrete Breakout Strength in Tension N_{pc} or $N_{pc,cr}$: The nominal concrete breakout strength of a single anchor or a group of anchors in tension, N_{pc} or $N_{pc,cr}$, respectively, must be calculated in accordance with ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, with modifications as described in this section. The basic concrete breakout strength of a single anchor in tension, N_{b}, must be calculated in accordance with ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable, using the values of f_{ct} and k_{cr} as given in Table 2 of this report. The nominal concrete breakout strength in tension in regions where analysis indicates no cracking in accordance with ACI 318-14 17.4.2.6 or ACI 318-11 D.5.2.6, as applicable, must be calculated with the value of k_{cr} as given in Table 2 and with $\phi_{fc,HV} = 1.0$.

For anchors installed in the soffit of sand-lightweight or normal-weight concrete filled steel deck floor and roof assemblies, as shown in Figure 5, calculation of the concrete breakout strength in accordance with ACI 318-14 17.4.3 or ACI 318-11 D.5.3.2, as applicable, is not required.

4.1.4 Requirements for Static Pullout Strength in Tension, N_{pu}: The nominal pullout strength of a single anchor in cracked and uncracked concrete, $N_{pu,cr}$ and $N_{pu,uncr}$, respectively, in accordance with ACI 318-14 17.4.3 or ACI 318-11 D.5.3.3, as applicable, is provided in Table 2.

The nominal pullout strength in tension of the anchors installed in the soffit of sand-lightweight or normal-weight concrete filled steel deck floor and roof assemblies, as shown in Figure 5, is provided in Table 2. In accordance with ACI 318-14 17.4.3.2 or ACI 318-11 D.5.3.2, as applicable, the nominal pullout strength in cracked concrete must be calculated according to Eq-1:

$$N_{pu,cr} = N_{pu,deck,cr} \sqrt{\frac{f_c}{3,000}} \text{ (lb, psi)}$$ \hspace{1cm} (Eq-1)$$

$$N_{pu,uncr} = N_{pu,deck,cr} \sqrt{\frac{f_c}{20.7}} \text{ (N, MPa)}$$

where f_c is the specified concrete compressive strength.

In regions where analysis indicates no cracking in accordance with ACI 318-14 17.4.3.6 or ACI 318-11 D.5.3.6, as applicable, the nominal pullout strength in tension can be adjusted by calculation according to Eq-2:

$$N_{pu,cr} = N_{pu,deck,uncr} \sqrt{\frac{f_c}{3,000}} \text{ (lb, psi)}$$ \hspace{1cm} (Eq-2)$$

$$N_{pu,uncr} = N_{pu,deck,uncr} \sqrt{\frac{f_c}{20.7}} \text{ (N, MPa)}$$

where f_c is the specified concrete compressive strength.

4.1.5 Requirements for Static Steel Pryout Strength in Shear, V_{ps}: The nominal concrete pryout strength of a single anchor in shear, V_{ps}, of a single anchor in accordance with ACI 318-14 17.5.1.2 ACI 318-11 D.6.1.2, as applicable, is given in Table 3 of this report and must be used in lieu of the values derived by calculation from ACI 318-14 Eq. 17.5.1.2b, ACI 318-11 or Eq. D-29, as applicable.

The shear strength, V_{sheark}, of anchors installed in the soffit of sand-lightweight or normal-weight concrete filled steel deck floor and roof assemblies, as shown in Figure 5, is given in Table 3.

4.1.6 Requirements for Static Concrete Pryout Strength in Shear, V_{cp} or $V_{cp,cr}$: The nominal concrete pryout strength of a single anchor or group of anchors in shear, V_{cp} or $V_{cp,cr}$, respectively, must be calculated in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, with modifications as described in this section. The basic concrete pryout strength of a single anchor in shear, V_{p}, must be calculated in accordance with ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable, using the value of f_c and d_a given in Table 3 of this report.

For anchors installed in the topside of concrete-filled steel deck assemblies, as shown in Figure 4, the nominal concrete breakout strength of a single anchor or group of anchors in shear, V_{of} or $V_{of,cr}$, respectively, must be calculated in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, using the actual member thickness, $h_{min,deck}$, determined at the intersection of A_{Vc} and V_{cpg}. Minimum member topping thickness for anchors in the topside of concrete-filled steel deck assemblies is given in Table 1 of this report.

For anchors installed in the soffit of sand-lightweight or normal-weight concrete filled steel deck floor and roof assemblies, as shown in Figure 5, calculation of the concrete breakout strength in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2 is not required.

4.1.7 Requirements for Static Concrete Pryout Strength in Shear, V_{cp} or $V_{cp,cr}$: The nominal concrete pryout strength of a single anchor or group of anchors, V_{cp} or $V_{cp,cr}$, respectively, must be calculated in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, modified by using the value of k_{cr} described in Table 3 of this report and the value of N_{pc} or $N_{pc,cr}$ as calculated in Section 4.1.3 of this report.

For anchors installed in the soffit of sand-lightweight or normal-weight concrete-filled steel deck floor and roof assemblies, as shown in Figure 5, calculation of the concrete pryout strength in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, is not required.

4.1.8 Requirements for Seismic Design:

4.1.8.1 General: For load combinations including seismic loads, the design must be performed in accordance with ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable. Modifications to ACI 318-14 17.2.3 shall be applied under Section 1905.1.8 of the 2018 and 2015 IBC. For the 2012 IBC, Section 1905.1.9 shall be omitted. Modifications to
ACI 318-08 D.3.3 shall be applied under Section 1908.1.9 of the 2009 IBC.

The nominal steel strength and nominal concrete breakout strength for anchors in tension, and the nominal concrete breakout strength and pryout strength for anchors in shear, must be calculated according to ACI 318-14 17.4.1 and 17.5 or ACI 318-11 D.5.1 and D.5.2, respectively, as applicable, as described in Sections 4.1.6 and 4.1.7 of this report. In accordance with ACI 318-14 17.4.3.2 or ACI 318-11 D.5.3.2, as applicable, the appropriate value for pullout strength in tension for seismic loads, \(N_{p,eq} \) or \(N_{p,deck,eq} \), described in Table 2 of this report, must be used in lieu of \(N_p \), \(N_{p,eq} \) or \(N_{p,deck,eq} \) may be adjusted by calculations for concrete compressive strength in accordance with Eq-1 of this report.

Where values for \(N_{p,eq} \) are not provided in Table 2, the pullout strength in tension for seismic loads need not be evaluated.

4.1.8.3 Seismic Shear: The nominal concrete breakout strength and pryout strength for anchors in shear must be calculated according to ACI 318-14 17.5.2 and 17.5.3 or ACI 318-11 D.6.2 and D.6.3, respectively, as applicable, as described in Sections 4.1.6 and 4.1.7 of this report. In accordance with ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable, the appropriate value for pullout strength in tension for seismic loads, \(N_{p,eq} \) or \(N_{p,deck,eq} \), described in Table 2 of this report, must be used in lieu of \(V_{sa,eq} \) or \(V_{sa,deck,eq} \), described in Table 2 of this report, must be used in lieu of \(V_{sa} \).

4.1.9 Requirements for the Interaction of Tensile and Shear Forces: Anchors or groups of anchors that are subject to the effects of combined axial (tensile) and shear forces must be designed in accordance with ACI 318-14 17.4.1 and 17.6 or ACI 318-11 D.5 and D.6, respectively, as applicable, taking into account the corresponding values given in Tables 2 and 3 of this report.

The anchors comply with ACI 318-14 2.3 or ACI 318-11 D.1, as applicable, as brittle steel elements and must be designed in accordance with ACI 318-14 17.2.3.4, 17.2.3.5, 17.2.3.6 or 17.2.3.7; ACI 318-11 D.3.3.4, D.3.3.5, D.3.3.6 or D.3.3.7; ACI 318-08 D.3.3.5 or D.3.3.6; or ACI 318-05 D.3.3.5, as applicable. Strength reduction factors, \(\phi \), are given in Table 2 and Table 3.

The 3/8-inch and 1/2-inch anchors may be installed in regions designated as IBC Seismic Design Categories A through F.

4.1.12 Lightweight Concrete: For the use of anchors in lightweight concrete, the modification factor \(\lambda \) equal to 0.8 \(\lambda \) is applied to all values of \(\sqrt{f_c'} \) affecting \(N_v \) and \(V_n \).

For ACI 318-14 (2018 and 2015 IBC), ACI 318-11 (2012 IBC) and ACI 318-08 (2009 IBC), \(\lambda \) shall be determined in accordance with the corresponding version of ACI 318.

For anchors installed in the soffit of steel deck assemblies, the anchors must be installed in accordance with Figure 5 and must have an axial spacing along the flute equal to the greater of \(3h_{ef} \) or 1.5 times the flute width.

4.2 Allowable Stress Design (ASD):

4.2.1 General: Where design values for use with allowable stress design load combinations in accordance with Section 1605.3 of the IBC are required, these are calculated using Eq-4 and Eq-5 as follow:

\[
T_{allowable,ASD} = \phi N_n / \alpha \quad (Eq-4)
\]

\[
V_{allowable,ASD} = \phi V_n / \alpha \quad (Eq-5)
\]

where:

\[
T_{allowable,ASD} = \text{Allowable tension load (lbf or kN)}
\]

\[
V_{allowable,ASD} = \text{Allowable shear load (lbf or kN)}
\]

\[
\phi N_n = \text{Lowest design strength of an anchor or anchor group in tension as determined in accordance with ACI 318-14 Chapter 17 and 2018 or 2015 IBC Section 1905.1.8, ACI 318-11 Appendix D, ACI 318-08 Appendix D and 2009 IBC Section 1908.1.9, as applicable (lbf or kN). For the 2012 IBC, Section 1905.1.9 shall be omitted.}
\]

\[
\phi V_n = \text{Lowest design strength of an anchor or anchor group in shear as determined in accordance with ACI 318-14 Chapter 17 and IBC 2018 and 2015 Section 1905.1.8, ACI 318-11 Appendix D, ACI 318-08 Appendix D and 2009 IBC Section 1908.1.9, as applicable (lbf or kN). For the 2012 IBC, Section 1905.1.9 shall be omitted.}
\]

\[
\alpha = \text{Conversion factor calculated as a weighted average of the load factors for the controlling load combination. In addition, } \alpha \text{ must include all applicable factors to account for nonductile failure modes and required over-strength.}
\]

The requirements for member thickness, edge distance and anchor spacing, described in this report, must apply. An example of allowable stress design tension values for illustrative purposes is shown in Table 4.

4.2.2 Interaction of Tensile and Shear Forces: The interaction must be calculated and consistent with ACI
5.0 CONDITIONS OF USE

The Snake+ anchors described in this report are suitable alternatives to what is specified in, those codes indicated in Section 1.0 of this report, subject to the following conditions:

5.1 The anchors must be installed in accordance with the manufacturer's published installation instructions and this report. In case of conflict, this report governs.

5.2 Anchor sizes, dimensions and minimum embedment depths are as set forth in this report.

5.3 Anchors must be installed in cracked and uncracked normal-weight concrete and lightweight concrete having a specified compressive strength, f_c, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa), and cracked and uncracked normal-weight or sand-lightweight concrete over steel deck having a minimum specified compressive strength, f_c, of 3,000 psi (20.7 MPa).

5.4 The $\frac{3}{8}$-inch (9.5 mm) anchors may be installed in the topside of cracked and uncracked normal-weight or sand-lightweight concrete-filled steel deck having a minimum specified compressive strength f_c, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

5.5 The values of f_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa); for redundant fastening (nonstructural) the values of f_c used for calculation purposes must equal 2,500 psi (17.2 MPa).

5.6 Strength design values must be established in accordance with Section 4.1 of this report.

5.7 Allowable stress design values must be established in accordance with Section 4.2 of this report.

5.8 Redundant fastening design values must be established in accordance with Section 4.3 of this report.

5.9 Anchor spacing and edge distance, as well as minimum member thickness, must comply with Table 1 and Figures 4 and 5 of this report.

5.10 Prior to installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.

5.11 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of screw anchors subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.

5.12 Anchors may be installed in regions of concrete where cracking has occurred or where analysis indicates cracking may occur ($h > h_i$), subject to the conditions of this report.

5.13 The $\frac{3}{8}$-inch- and $\frac{1}{2}$-inch-diameter anchors may be used to resist short-term loading due to wind or seismic forces (Seismic Design Categories A through F under the IBC), subject to the conditions of this report.

5.14 Anchors are not permitted to support fire-resistance-rated construction. Where not otherwise prohibited by the code, anchors are permitted for installation in fire-resistance-rated construction provided that at least one of the following conditions is fulfilled:

- Anchors are used to resist wind or seismic forces only.
- Anchors that support gravity load-bearing structural elements are within a fire-resistance-rated envelope or a fire-resistance-rated membrane, are protected by approved fire-resistance-rated materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
- Anchors are used to support nonstructural elements.

5.15 Snake+ anchors must not be removed from concrete and reused.

5.16 Anchors have been evaluated for reliability against brittle failure and found to be not significantly sensitive to stress-induced hydrogen embrittlement.

5.17 Special inspection must be provided in accordance with Section 4.5 of this report.
5.18 Use of anchors is limited to dry, interior locations.

5.19 Anchors are manufactured under an approved quality-control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Mechanical Anchors in Concrete Elements (AC193), dated October 2017 (editorially revised April 2018), which incorporates requirements in ACI 355.2-07 / ACI 355.2-04, for use in cracked and uncracked concrete; including optional suitability tests 12 and 13 (AC193, Table 4.2) for seismic tension and shear; and quality control documentation.

7.0 IDENTIFICATION

7.1 The Snake+ anchors are identified in the field by their dimensional characteristics and packaging. Packages are identified with the anchor name, part number, type, size, the company name as set forth in Section 3.1 of this report, and the evaluation report number (ESR-2272).

7.2 The report holder’s contact information is the following:

DEWALT
701 EAST JOPPA ROAD
TOWSON, MARYLAND 21286
(800) 524-3244
www.DEWALT.com
anchors@DEWALT.com

7.3 The Additional Listee’s contact information is the following:

POWERS FASTENERS
701 EAST JOPPA ROAD
TOWSON, MARYLAND 21286
(800) 524-3244
www.powers.com
engineering@powers.com

TABLE 1—SNAKE+ ANCHOR INSTALLATION SPECIFICATIONS

<table>
<thead>
<tr>
<th>Anchor Property / Setting Information</th>
<th>Symbol</th>
<th>Units</th>
<th>Nominal Anchor Size / Threaded Coupler Diameter (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal outside anchor diameter</td>
<td>(d_a)</td>
<td>in.</td>
<td>0.500 0.750</td>
</tr>
<tr>
<td>Internal thread diameter (UNC)</td>
<td>(d)</td>
<td>in.</td>
<td>0.375 0.500</td>
</tr>
<tr>
<td>Minimum diameter of hole clearance in fixture for steel insert element (following anchor installation)</td>
<td>(d_{sl})</td>
<td>in.</td>
<td>(\frac{7}{16}) (\frac{9}{16})</td>
</tr>
<tr>
<td>Nominal drill bit diameter</td>
<td>(d_{dbit})</td>
<td>in.</td>
<td>(\frac{3}{4}) ANSI (\frac{3}{4}) ANSI</td>
</tr>
<tr>
<td>Minimum nominal embedment depth²</td>
<td>(h_{nom})</td>
<td>in.</td>
<td>1(\frac{5}{8}) 2(\frac{3}{16})</td>
</tr>
<tr>
<td>Effective embedment</td>
<td>(h_{ef})</td>
<td>in.</td>
<td>1.10 1.54</td>
</tr>
<tr>
<td>Minimum hole depth</td>
<td>(h_{hol})</td>
<td>in.</td>
<td>2 2(\frac{1}{2})</td>
</tr>
<tr>
<td>Overall anchor length</td>
<td>(\ell_{anch})</td>
<td>in.</td>
<td>1(\frac{1}{4}) 1(\frac{11}{16})</td>
</tr>
<tr>
<td>Maximum impact screwdriver power (torque)</td>
<td>(T_{screw})</td>
<td>ft.-lb.</td>
<td>345 345</td>
</tr>
<tr>
<td>Maximum tightening torque of steel insert element (threaded rod or bolt)</td>
<td>(T_{max})</td>
<td>ft.-lb.</td>
<td>8 36</td>
</tr>
</tbody>
</table>

Anchors Installed in Concrete Construction²

Minimum member thickness²	\(h_{min}\)	in.	4 4
Critical edge distance²	\(c_{ac}\)	in.	3 4
Minimum edge distance²	\(c_{min}\)	in.	3 4
Minimum spacing distance²	\(s_{min}\)	in.	3 4

Anchors installed in the Topside of Concrete-filled Steel Deck Assemblies³

Minimum member topping thickness	\(h_{top,deck}\)	in.	3\(\frac{1}{4}\) Not applicable
Critical edge distance	\(c_{ac,deck,stop}\)	in.	3 Not applicable
Minimum edge distance	\(c_{min,deck,stop}\)	in.	3 Not applicable
Minimum spacing distance	\(s_{min,deck,stop}\)	in.	3 Not applicable

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m.

¹The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

²For installations through the soffit of steel deck into concrete, see Figure 5. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from center of the flute. In addition, anchors shall have an axial spacing along the flute a minimum 1.5 times the flute width.

³For \(\frac{3}{4}\)-inch diameter anchors installed in the topside of concrete-filled steel deck assemblies, see Figure 4 of this report.
1. Using the proper drill bit size, drill a hole into the base material to the required depth (e.g. dust extractor, hollow bit). The tolerances of the carbide drill bit used should meet the requirements of ANSI Standard B212.15.

2. Select a powered impact wrench that does not exceed the maximum torque, T_{max}, for the selected anchor diameter. Attach the Snake+ setting tool supplied by to the impact wrench. Mount the anchor onto the setting tool.

3. Drive the anchor into the hole to the required embedment until the shoulder of the Snake+ setting tool comes into contact with the surface of the base material. Do not spin the setting tool off the anchor to disengage.

4. Insert threaded rod or a bolt into the Snake+, taking care not to exceed the maximum specified tightening torque of the steel insert element, T_{max}. Minimum thread engagement must be full anchor depth.

FIGURE 1—SNAKE+ SCREW ANCHOR AND SETTING TOOL

FIGURE 2—SNAKE+ SCREW ANCHOR INSTALLED WITH STEEL INSERT ELEMENT

FIGURE 3—SNAKE+ SCREW ANCHOR INSTALLATION INSTRUCTIONS

1 3/8-inch diameter anchors may be placed in the topside of floor or roof steel deck profiles provided the minimum topping thickness, minimum spacing distance and minimum edge distance are satisfied as given in Table 1 of this report.

FIGURE 4—SNAKE+ INSTALLATION DETAIL FOR ANCHORS IN THE TOPSIDE OF CONCRETE-FILLED STEEL DECK ASSEMBLIES

1 Anchors may be placed in the upper or lower flute of floor or roof steel deck profiles provided the minimum hole clearance is satisfied. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from the center of the flute. The offset distance may be increased proportionally for profiles with lower flute widths greater than those shown provided the minimum lower flute edge distance is also satisfied.

FIGURE 5—SNAKE+ INSTALLATION DETAIL FOR ANCHORS IN THE SOFFIT OF CONCRETE OVER STEEL DECK ASSEMBLIES
TABLE 2—TENSION DESIGN INFORMATION FOR SNAKE+ ANCHORS IN CONCRETE

For use with load combinations taken from ACI 318-14, Section 5.3 or ACI 318-11, Section 9.2\(^1\)\(^2\)

<table>
<thead>
<tr>
<th>Design Characteristic</th>
<th>Notation</th>
<th>Units</th>
<th>Nominal Anchor Size / Threaded Coupler Diameter (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\frac{3}{16}) inch</td>
</tr>
<tr>
<td>Anchor category</td>
<td>1, 2 or 3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Nominal embedment depth</td>
<td>(h_{nom})</td>
<td>in.</td>
<td>1(\frac{1}{8})</td>
</tr>
</tbody>
</table>

STEEL STRENGTH IN TENSION\(^4\)

<table>
<thead>
<tr>
<th>Minimum specified yield strength of steel insert element (threaded rod or bolt)</th>
<th>(f_y)</th>
<th>ksi</th>
<th>ASTM A36</th>
<th>36.0</th>
<th>ASTM A193, Gr. B7</th>
<th>105.0</th>
<th>ASTM A36</th>
<th>36.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum specified ultimate strength of steel insert element (threaded rod or bolt)</td>
<td>(f_{du})</td>
<td>ksi</td>
<td>ASTM A36</td>
<td>58.0</td>
<td>ASTM A193, Gr. B7</td>
<td>125.0</td>
<td>ASTM A36</td>
<td>58.0</td>
</tr>
<tr>
<td>Effective tensile stress area of steel insert element (threaded rod or bolt)</td>
<td>(A_{eff,N})</td>
<td>in(^2)</td>
<td>0.0318</td>
<td>0.1419</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel strength in tension</td>
<td>(N_{p,deck})</td>
<td>lbf</td>
<td>ASTM A36</td>
<td>4,495</td>
<td>ASTM A193, Gr. B7</td>
<td>9,685</td>
<td>ASTM A36</td>
<td>8,230</td>
</tr>
<tr>
<td>Reduction factor for steel strength</td>
<td>(\phi)</td>
<td>-</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCRETE BREAKOUT STRENGTH IN TENSION\(^8\)

Effective embedment	\(h_{ef}\)	in.	1.10	1.54
Effectiveness factor for uncracked concrete	\(k_{uncr}\)	-	24	30
Effectiveness factor for cracked concrete	\(k_{cr}\)	-	17	24
Modification factor for cracked and uncracked concrete	\(\psi_{k,N}\)	-	(see note 5)	(see note 5)
Critical edge distance (uncracked concrete only)	\(c_{cr}\)	in.	3	4
Reduction factor for concrete breakout strength	\(\phi\)	-	0.65 (Condition B)	

PULLOUT STRENGTH IN TENSION\(^8\)

Characteristic pullout strength, uncracked concrete (2,500 psi)	\(N_{p,uncr}\)	lbf	See note 7	See note 7
Characteristic pullout strength, cracked concrete (2,500 psi)	\(N_{p,cr}\)	lbf	See note 7	1,665
Reduction factor for pullout strength	\(\phi\)	-	0.65 (Condition B)	

PULLOUT STRENGTH IN TENSION FOR SEISMIC APPLICATIONS\(^8\)

| Characteristic pullout strength, seismic (2,500 psi) | \(N_{p,seq}\) | lbf | See note 7 | 1,665 |
| Reduction factor for pullout strength, seismic | \(\phi\) | - | 0.65 (Condition B) |

PULLOUT STRENGTH IN TENSION FOR SOFFIT OF SAND-LIGHTWEIGHT AND NORMAL WEIGHT CONCRETE OVER STEEL DECK

Characteristic pullout strength, uncracked concrete over steel deck\(^6,9\)	\(N_{p,deck,uncr}\)	lbf	1,515	1,625
Characteristic pullout strength, cracked concrete over steel deck\(^6,9\)	\(N_{p,deck,cr}\)	lbf	1,075	1,300
Characteristic pullout strength, concrete over steel deck, seismic\(^6,9\)	\(N_{p,deck,seq}\)	lbf	1,075	1,300
Reduction factor for pullout strength, concrete over steel deck	\(\phi\)	-	0.65 (Condition B)	

| Mean axial stiffness values service load range\(^10\) | Uncracked concrete | \(\beta\) | \(10^3\) lbf/in. | 2800 | 545 |
| Cracked concrete | \(\beta\) | \(10^3\) lbf/in. | 900 | 160 |

For SI: 1 inch = 25.4 mm, 1 ksi = 6.894 N/mm\(^2\); 1 lbf = 0.0044 kN.

\(^1\)The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable, must apply.

\(^2\)Installation must comply with published instructions and details.

\(^3\)It is assumed that the threaded rod or bolt used with the Snake+ anchor is a ductile steel element with minimum specified properties as listed in the table or an equivalent steel element. The Snake+ anchor is considered a brittle steel element in tension as defined by ACI 318-14 2.3 or ACI 318-11 D.3.3, as applicable.

\(^4\)Pullout strength does not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.

\(^5\)For all design cases use \(k_{cr}\) and \(k_{uncr}\) must be used.

\(^6\)Anchors are permitted to be used in lightweight concrete in accordance with Section 4.1.4 of this report.

\(^7\)Values for \(N_{p,deck}\) are for sand-lightweight concrete \((f_{c,lm}= 3,000 \text{ psi})\) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, is not required for anchors installed in the deck soffit (flute).

\(^8\)Mean values shown actual stiffness varies considerably depending on concrete strength, loading and geometry of application.
TABLE 3—SHEAR DESIGN INFORMATION FOR SNAKE+ ANCHORS IN CONCRETE
(For use with load combinations taken from ACI 318-14, Section 5.3 or ACI 318-11, Section 9.2)\(^1,2\)

<table>
<thead>
<tr>
<th>Design Characteristic</th>
<th>Notation</th>
<th>Units</th>
<th>Nominal Anchor Size / Threaded Coupler Diameter (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\frac{3}{4}) inch</td>
</tr>
<tr>
<td>Anchor category</td>
<td>1, 2 or 3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Nominal embedment depth</td>
<td>(h_{nom})</td>
<td>in.</td>
<td>(\frac{1}{16})</td>
</tr>
</tbody>
</table>

STEEL STRENGTH IN SHEAR\(^4\)

<table>
<thead>
<tr>
<th>Steel strength in shear(^5)</th>
<th>(V_{sa})</th>
<th>lbf</th>
<th>ASTM A36</th>
<th>770</th>
<th>ASTM A193, Gr. B7</th>
<th>1,655</th>
<th>ASTM A36</th>
<th>1,995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction factor for steel strength(^7)</td>
<td>(\phi)</td>
<td>-</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCRETE BREAKOUT IN SHEAR\(^6\)

<table>
<thead>
<tr>
<th>Load bearing length of anchor</th>
<th>(l_a)</th>
<th>in.</th>
<th>1.10</th>
<th>1.54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal outside anchor diameter</td>
<td>(d_{oa})</td>
<td>in.</td>
<td>0.500</td>
<td>0.750</td>
</tr>
<tr>
<td>Reduction factor for concrete breakout strength(^3)</td>
<td>(\phi)</td>
<td>-</td>
<td>0.70 (Condition B)</td>
<td></td>
</tr>
</tbody>
</table>

PRYOUT STRENGTH IN SHEAR\(^8\)

<table>
<thead>
<tr>
<th>Coefficient for pryout strength</th>
<th>(k_{yp})</th>
<th>-</th>
<th>1.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective embedment</td>
<td>(h_{ef})</td>
<td>in.</td>
<td>1.10</td>
<td>1.54</td>
</tr>
<tr>
<td>Reduction factor for pryout strength(^3)</td>
<td>(\phi)</td>
<td>-</td>
<td>0.70 (Condition B)</td>
<td></td>
</tr>
</tbody>
</table>

STEEL STRENGTH IN SHEAR FOR SEISMIC APPLICATIONS

<table>
<thead>
<tr>
<th>Steel strength in shear, seismic(^7)</th>
<th>(V_{sa,eq})</th>
<th>lbf</th>
<th>ASTM A36</th>
<th>770</th>
<th>ASTM A193, Gr. B7</th>
<th>1,655</th>
<th>ASTM A36</th>
<th>1,995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction factor for steel strength in shear, seismic(^7)</td>
<td>(\phi)</td>
<td>-</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEEL STRENGTH IN SHEAR FOR SOFFIT OF SAND-LIGHTWEIGHT AND NORMAL WEIGHT CONCRETE OVER STEEL DECK\(^9\)

<table>
<thead>
<tr>
<th>Steel strength in shear, concrete over steel deck(^6)</th>
<th>(V_{sa,deck})</th>
<th>lbf</th>
<th>ASTM A36</th>
<th>770</th>
<th>ASTM A193, Gr. B7</th>
<th>1,655</th>
<th>ASTM A36</th>
<th>1,995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel strength in shear, concrete over steel deck, seismic(^6)</td>
<td>(V_{sa,deck,eq})</td>
<td>lbf</td>
<td>ASTM A36</td>
<td>770</td>
<td>ASTM A193, Gr. B7</td>
<td>1,655</td>
<td>ASTM A36</td>
<td>1,995</td>
</tr>
<tr>
<td>Reduction factor for steel strength in shear, concrete over steel deck(^6)</td>
<td>(\phi)</td>
<td>-</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN.
\(^1\)The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable; for anchors resisting seismic load combinations the additional requirements of ACI 318-14 17.2.3 or ACI 318-11 D.3.3 shall apply.
\(^2\)Installation must comply with published instructions and details.
\(^3\)All values of \(\phi\) were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \(\phi\) must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, for the appropriate \(\phi\) factor.
\(^4\)It is assumed that the threaded rod or bolt used with the Snake+ anchor will be a ductile steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.4.3(c), as applicable, for the appropriate \(\phi\) factor.
\(^5\)Steel strength in shear, concrete over steel deck3
\(^6\)Concrete determined to remain uncracked for the life of the anchorage.
\(^7\)Load combinations are taken from ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable (no seismic loading).
\(^8\)Assumes 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L.
\(^9\)Calculation of weighted average for conversion factor \(\alpha = 1.2(0.3) + 1.6(0.7) = 1.48\).
\(^{10}\)Steel Insert Element (ASTM)\(^4\).
\(^{11}\)Nominal outside anchor diameter (in.)

TABLE 4—EXAMPLE ALLOWABLE STRESS DESIGN VALUES FOR ILLUSTRATIVE PURPOSES\(^{1,2,3,4,5,6,7,8,9}\)

<table>
<thead>
<tr>
<th>Nominal Anchor Size (inches)</th>
<th>Steel Insert Element (ASTM)(^{12})</th>
<th>Nominal Embedment Depth (inches)</th>
<th>Effective Embedment (inches)</th>
<th>Allowable Tension Load (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{8})</td>
<td>A36</td>
<td>(1\frac{1}{8})</td>
<td>1.10</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>A193, Gr. B7</td>
<td>(1\frac{3}{8})</td>
<td>1.10</td>
<td>610</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>A36</td>
<td>(2\frac{1}{16})</td>
<td>1.54</td>
<td>1,260</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN.
\(^1\)Single anchor with static tension load only.
\(^2\)Concrete determined to remain uncracked for the life of the anchorage.
\(^3\)Load combinations taken from ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable (no seismic loading).
\(^4\)Assumes 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L.
\(^5\)Calculation of weighted average for conversion factor \(\alpha = 1.2(0.3) + 1.6(0.7) = 1.48\).
\(^6\)Steel Insert Element (ASTM)\(^4\).
\(^7\)Load combinations are taken from ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable (no seismic loading).
\(^8\)Assumes 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L.
\(^9\)Calculation of weighted average for conversion factor \(\alpha = 1.2(0.3) + 1.6(0.7) = 1.48\).
\(^{10}\)The threaded rod or bolt used with the Snake+ anchor must have the minimum specified properties as listed in Table 2 or an equivalent steel element.
1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that Snake+ anchors in cracked and uncracked concrete, described in ICC-ES master evaluation report ESR-2272, have also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:
- 2017 City of Los Angeles Building Code (LABC)
- 2017 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The Snake+ anchors in cracked and uncracked concrete, described in Sections 2.0 through 7.0 of the master evaluation report ESR-2272, comply with the LABC Chapter 19, and the LARC, and are subject to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The Snake+ anchors in cracked and uncracked concrete described in this evaluation report must comply with all of the following conditions:

- All applicable sections in the master evaluation report ESR-2272.
- The design, installation, conditions of use and identification of the anchors are in accordance with the 2015 International Building Code® (2015 IBC) provisions noted in the master evaluation report ESR-2272.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.
- The allowable and strength design values listed in the master evaluation report and tables are for the connection of the anchors to the concrete. The connection between the anchors and the connected members shall be checked for capacity (which may govern).

This supplement expires concurrently with the evaluation report, reissued December 2019.
1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that Powers Snake+ Anchors in Cracked and Uncracked Concrete, recognized in ICC-ES master evaluation report ESR-2272, have also been evaluated for compliance with the codes noted below.

Compliance with the following codes:
- 2017 Florida Building Code—Building
- 2017 Florida Building Code—Residential

2.0 PURPOSE OF THIS SUPPLEMENT

The Powers Snake+ Anchors in Cracked and Uncracked Concrete described in Sections 2.0 through 7.0 of the master evaluation report ESR-2272 comply with the Florida Building Code—Building and the Florida Building Code—Residential, provided the design and installation are in accordance with the 2015 International Building Code® (IBC) provisions noted in the master evaluation report.

Use of the Powers Snake+ Anchors in Cracked and Uncracked Concrete as described in the master evaluation report for compliance with the High-Velocity Hurricane Zone provisions of the Florida Building Code—Building and the Florida Building Code—Residential, has not been evaluated, and is outside the scope of this supplement.

For products falling under Florida Rule 9N-3, verification that the report holder’s quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued December 2019.