1.0 EVALUATION SCOPE
Compliance with the following codes:

For evaluation for compliance with codes adopted by the Los Angeles Department of Building and Safety (LADBS), see ESR-2586 LABC and LARC Supplement.

Properties evaluated:
- Structural
- Fire-resistant construction
- Thermal resistance and transmittance

2.0 USES

3.0 DESCRIPTION
3.1 Structural-use Panels:
3.1.1 General: Performance Standards and Qualification Policy for Wood Structural Panels is promulgated by APA—The Engineered Wood Association. The document includes:
- Sturd-I-Floor Standard
identified as Exposure 1, and are not intended for permanent exposure to weather. Exposure 1 panels are designed to be used for roof sheathing, subflooring, combination subfloor-underlayment, or wall sheathing, and must be covered with an approved roof covering or exterior wall covering. Panels identified as Exposure 1 are designed to be used for roof sheathing where exposed on the underside such as on eaves.

3.1.2.3 Composition:

3.1.2.3.1 Veneer: Veneer used in structural-use panels meets the applicable requirements of DOC PS-1. Veneer not meeting the requirements of DOC PS-1 is designed to be used, provided the panels meet the applicable performance requirements. Veneer is used throughout the all-veneer panels and for face and back plies or inner layers in composite panels.

3.1.2.3.2 Reconstituted Wood: Panels composed entirely of reconstituted wood are oriented strand board (OSB) or other wood-based panels. The panels are manufactured to meet the performance requirements given in Performance Standards and Qualification Policy for Wood Structural Panels.

3.1.2.3.3 Veneer and Reconstituted Wood: Panels composed of veneer and reconstituted wood are composite panels. The panels are manufactured to meet the performance requirements given in Performance Standards and Qualification Policy for Wood Structural Panels.

3.1.3 Panels:

3.1.3.1 Size: Panels are produced in nominal sizes of 4 feet by 8, 9 or 10 feet (1.2 m by 2.4, 2.7 or 3 m). Length and width tolerances are +0, -1/8 inch (+0, -3.18 mm).

3.1.3.2 Tongue-and-Groove Joints: When panels have tongue-and-groove joints, the joints are on the length sides, width ends, or both.

3.1.3.3 Shiplap Edges: When siding panels have shiplap edges, the edges occur on the 8-, 9-, or 10-foot (2.4, 2.7, or 3 m) sides. The joint is cut approximately one-half way through the thickness and, when installed (after expansion occurs), provides a 5/8-inch (9.53 mm) lap.

3.2 303 Siding:

303 Siding is manufactured from exterior plywood meeting the gluebond performance requirements of DOC PS-1 for construction and industrial plywood, and must be one of the following:

1. Grade C-C or better, conforming to PS-1.
2. Openings in face veneers used for three- and four-ply panels limited to open splits up to 1/16 inch (1.6 mm) wide and other openings up to 1/4 by 1/2 inch (6.4 by 12.7 mm).
3. Overlaid panels, conforming to PS-1.
4. Panels meeting grade requirements of Items 1, 2 and 3, above, but nonconforming with respect to PS-1 by reason of species. Species not provided for in PS-1 may be used in 303 Siding panels, subject to the following conditions:
 a. Species group assignment shall be established for PS-1 species grouping; the group assignments will govern use of the species for inner plies and backs as covered by this specification.
 b. Panels manufactured with unlisted species for faces must be identified by the common name for that species.

4.0 INSTALLATION

4.1 General:
The Wood Structural Panels and 303 Siding must be installed in accordance with this report and the applicable code for wood structural panels and siding. The following installation provisions are limited to those not found in the applicable code.

4.2 Sturd-I-Floor:
Sturd-I-Floor must be installed in accordance with the applicable code provisions for wood structural panels of single-floor grade meeting PS-2.

If panels are field-glued with an adhesive meeting ASTM D3498 applied to joists and tongue-and-groove edges, nails may be spaced a maximum of 12 inches (304.8 mm) along all bearers for panels 3/4 inch (19.05 mm) thick or less, and 6 inches (152.4 mm) for thicker panels. Framing must be free of surface moisture, dirt, cement, and other foreign materials prior to application of the adhesive. Where diaphragm action is required, the nail size and spacing must be as set forth in the applicable code.

4.3 Sheathing:
Sheathing must be installed in accordance with the applicable code provisions for wood structural panels of Sheathing Grade meeting PS-2.

Table 4 lists the individual-component thermal resistance and overall-assembly thermal transmittance values, meeting the requirements of the 2012 IRC Table N1102.1.1 and 2012 IECC Table R402.1.1, for light frame wood wall assemblies as described in Section 4.10. Table 4 does not address the applicable requirements related to weather resistance, moisture transfer, or durability when water-resistant, air-resistant, or termite-resistant barriers are prescribed. Such requirements are subject to approval by the Authority Having Jurisdiction (AHJ).

Table 4 insulation components must comply with the applicable requirements of 2012 IRC Sections R302.10, R316 and N1102.1.1, in addition to the thermal resistance requirements specified in Section 4.10.

4.4 Siding:

4.4.1 General: Siding must be installed over a water-resistive barrier complying with IRC Section R703.2 or IBC Section 1404.2, as applicable, applied either directly to framing or over sheathing. When siding is applied directly to studs, the studs must be spaced no farther apart than the span rating included in the grade mark on the panel. All veneer-faced siding panels with a span rating of 16 or 24 inches (406 or 610 mm) on center may be applied over studs spaced 24 inches (610 mm) on center when application is with face grain horizontal or over nailable sheathing. Other siding panels with a span rating of 16 or 24 inches (406 or 610 mm) on center may be applied over studs spaced 24 inches (610 mm) on center when application is over nailable sheathing. Nailable sheathing must be nominally 1-inch (25 mm) boards or structural-use panels of thickness permitted in the applicable code for wood structural panel sheathing to which the siding is directly attached.

Fasteners for attaching siding must be nonstaining box, siding or casing nails. For panels 1/2 inch (12.7 mm) thick or less, 6d nails are used, and 8d for thicker panels. For 5/8-inch (9.53 mm) and thinner lap siding, 6d nails are used, and 8d for thicker lap siding.
4.4.2 Panel Siding: Panel siding must be fastened directly to framing in accordance with wood structural panel provisions of the code. When siding 1/2 inch (12.7 mm) or less in thickness is installed over foam plastic insulation up to 1 inch (25.4 mm) in thickness, the siding must be fastened with 8d galvanized box nails. Siding greater than 1/2 inch (12.7 mm) in thickness applied over foam plastic insulation must be fastened with 10d galvanized box nails.

Panel siding applied directly to studs, spaced in accordance with the span rating and fastened with 6d galvanized box nails or equivalent, spaced 6 inches (152 mm) on center at panel edges and 12 inches (305 mm) on center at intermediate studs, is an alternative to the wood structural panel sheathing construction specified in the code for wall bracing (2018, 2015 and 2012 IRC Table R602.10.4, Method WSP, and 2009 IRC Table R602.10.2, Method WSP).

Shear values for all-veneer panel siding must be as given in the applicable code for siding applied directly to studs or over 1/2- or 9/16-inch (12.7 mm or 15.88 mm) gypsum sheathing. Thickness at point of nailing at panel edges determines applicable values.

4.4.3 Lap Siding: Lap siding must be applied either directly to framing or over nailable sheathing as defined above. Vertical end joints must be either caulked or otherwise installed in accordance with the recommendations of the manufacturer. Siding joints, if staggered, may occur away from studs when nailable sheathing is used. When lap siding is installed over nailable sheathing, nails must be spaced 8 inches (203 mm) on center along the bottom edge. If siding is wider than 12 inches (305 mm), siding is also nailed to intermediate studs with nails spaced 8 inches (203 mm) on center.

4.5 Diaphragms and Shear Walls:

4.5.1 Diaphragm Construction: When used in diaphragm construction, structural-use panels are assigned the values in the applicable code. The unblocked values shown also apply to panels having tongue-and-groove joints along the longitudinal edges, except as noted below.

One-and-one-eighth-inch (28.58 mm) structural-use panels fastened with 8d ring or screw-shank nails or 10d common nails are assigned the values for 10d common nails and 10/32-inch (15.08 mm) gypsum sheathing. Where blocked values are required for 13/32- or 1/4-inch (27.78 or 28.58 mm) tongue-and-grooved panels, 1-inch-by-3/16-inch-crown (25.4 by 9.53 mm) by No. 16 gage staples must be driven through the tongue-and-groove edges 1/8 inch (9.53 mm) from the joint and driven so as to penetrate the tongue as illustrated in Figure 1. Staples must be spaced at one-half of the boundary nail spacing in the applicable code for Cases 1 and 2, and at one-third the boundary nail spacing for Cases 3 through 6.

4.5.2 Shear Walls: When used in shear walls, sheathing is assigned the values in the applicable code except that the allowable shear for wall bracing panels applied directly to studs in accordance with the above nail schedule must be 180 plf (2626.2 N/m) regardless of panel thickness.

4.6 303 Siding:

Installation of 303 Siding must comply with the following:

1. 303 Siding panels intended for direct application to studs spaced 16 inches (406 mm) on center, and 303 panels meeting the requirements of Item 2.e. of Section 4.6, intended for direct application to studs spaced 24 inches (610 mm) on center, must conform to the following requirements:
 a. Panels must have a minimum average thickness of 9/16 inch (7.9 mm) in any 16-inch (406 mm) width.
 b. When two crossband layers remain intact, the minimum thickness of crossbanding must not be less than 1/16 inch (1.6 mm) for Group 1, 2 or 3 species (PS-1).
 c. When only one crossband layer remains intact, the requirements shown in Table 1 apply.

2. 303 Siding panels intended for direct application to studs located 24 inches (610 mm) on center must conform to the minimum requirements specified in Items 1 through d of this section, or the special conditions specified in Item e of this section.
 a. Panels must be minimum four-ply construction. Four-ply panels must not exceed 9/8 inch (16 mm) in nominal thickness, and texturing must not extend into the inner layer. Panels of five or more plies must have at least two crossband layers remaining intact.
 b. Minimum net panel thickness at any point must be 13/32 inch (10.3 mm), with no minus tolerance.
 c. Panels must have a minimum average thickness of 7/16 inch (11.1 mm) in any 24-inch (610 mm) width.
 d. Thickness of crossbanding must be at least 1/10 inch (2.5 mm).
 e. Panels must have a minimum of five plies and a nominal thickness of 13/32 inch (15 mm) or more (measured in ungrooved areas), with grooves no wider than 1/16 inch (38 mm) and spaced no closer than 12 inches (305 mm) on center. Panels must meet the requirements of Item 3, 4, 7 or 8 of Table 1.

3. As an alternate to the requirements of Section 4.6, paragraph 1 or 2, 303 Siding panels or lap siding intended for direct application to studs spaced 16 or 24 inches (406 or 610 mm) on center must conform to the performance testing provisions for siding given in Performance Standards and Qualification Policy for Structural-Use Panels.

4. 303 Siding panels must be identified with an APA grade-trademark bearing the notation “303 Siding” or “Rated Siding 303”. Grade-trademarks for panels fulfilling the requirements of Section 4.6, paragraph 1 or 3, must include the additional notation “16 inches on center.” Grade-trademarks for panels fulfilling the requirements of Section 4.6, paragraph 2 or 3, must include the additional notation “24 inches on center.”

5. 303 Siding panels with a minimum thickness set forth in Section 4.6, paragraph 1, must be applied in accordance with the stud spacing indicated on the grade-trademark, except that the siding may be applied over studs spaced 24 inches (610 mm) on center if application is with face grain horizontal or if over one of the following:
 a. One-inch-thick (25.4 mm) board sheathing.
 b. Three-eighths-inch-thick (9.5 mm) or 13/32-inch-thick (11.9 mm), three-ply plywood sheathing, with face grain of sheathing perpendicular to studs.
c. Fifteen-thirty-seconds-inch-thick (11.9 mm), four- or five-ply plywood sheathing, with face grain of sheathing parallel or perpendicular to studs.

d. Other rated sheathing panels identified with PS-2 or Performance Standards and Qualification Policy for Structural-Use Panels having a roof span rating of 24 inches (610 mm) or more, with the long panel dimension parallel or perpendicular to studs.

6. 303 Siding panels may be applied either directly to framing or over sheathing, provided all siding joints occur over framing and are protected with a continuous wood batten, approved caulking, flashing, and vertical or horizontal shiplaps, or are otherwise made waterproof to the satisfaction of the code official. Where grooved siding is applied horizontally directly to framing, siding must be backed with a water-resistant barrier complying with IBC Section 1404.2 or IRC Section R703.2. 303 Siding must be fastened directly to framing in accordance with 2018 and 2015 IBC Table 2304.10.1, 2012 and 2009 IBC Table 2304.9.1, or IRC Table R602.3(1).

7. 303 Siding panels \(\frac{1}{2}\) inch (12.7 mm) or less in thickness may be installed over foam plastic sheathing up to 1 inch (25.4 mm) in thickness, using 8d galvanized box nails. 303 Siding greater than \(\frac{1}{2}\) inch (12.7 mm) in thickness applied over foam sheathing must be fastened using 10d galvanized box nails. Other corrosion-resistant box nails may be used if racking shear values are not required.

8. 303 lap siding may be applied over nailable sheathing (see Section 4.6, paragraph 5) or, when span rated, may be applied directly to studs or over nonstructural sheathing. When lap siding is applied directly to studs or over nonstructural sheathing, diagonal bracing or other code-specified wall-bracing methods must be used. A code-specified water-resistant barrier must be used beneath the lap siding. Lap siding \(\frac{1}{2}\) inch (12.7 mm) thick or less is permitted to be installed directly to studs using 6d galvanized box, siding or casing nails, with 8d nails used for lap siding thicker than \(\frac{1}{2}\) inch (12.7 mm). If lap siding is installed over rigid foam plastic insulation sheathing up to 1 inch (25 mm) thick, 10d nails [for \(\frac{1}{16}\)-inch (9.5 mm) or \(\frac{1}{16}\)-inch-thick (11.1 mm) siding], 12d nails [for \(\frac{1}{16}\)-inch (11.9 mm) or \(\frac{1}{16}\)-inch-thick (12.7 mm) siding], or 16d penny nailing [for \(\frac{3}{16}\)-inch-thick (15.1 mm), or thicker, siding] must be used. Nails must be installed at every stud along the bottom edge of the lap siding. Nails for lap siding over nailable sheathing must be spaced 8 inches (203 mm) on center along the bottom edge. Minimum head lap is 1 inch (25.4 mm).

9. The shear values for 303 siding panels installed directly to the studs or over gypsum sheathing are the same as those specified in 2018, 2015 and 2012 IBC Table 2306.3(1), 2009 IBC Table 2306.3, and Tables 4.3A and 4.3B of the Special Design Provisions for Wind and Seismic (SDPWS) for plywood panel siding. Thickness at point of nailing at panel edges determines allowable shear wall values.

10. 303 Siding applied over foam plastic insulation on studs spaced either 16 or 24 inches (406 or 610 mm) on center with gypsum wallboard installed on the interior is an alternate to the construction specified in 2018 and 2015 IBC Section 2308.6.3 (Method WSP), and item 3 of 2012 and 2009 IBC Section 2308.9.3. In 2018, 2015 and 2012 IRC Section R602.10.4 (Method WSP), and Method WSP of 2009 IRC Section R602.10.2.

11. 303 Siding used as roof sheathing, with the underside exposed, is permitted to be installed in accordance with the allowable spans specified in Table 2. 303 Siding is assigned the shear values given in 2018, 2015 and 2012 IBC Table 2306.3(1), 2009 IBC Table 2306.3, and Tables 4.3A and 4.3B of the Special Design Provisions for Wind and Seismic (SDPWS) for grades other than Structural I. Thickness at point of nailing at panel edges determines applicable values.

12. 303 Siding with a maximum thickness of \(\frac{5}{8}\) inch (15.9 mm) and a minimum thickness of \(\frac{1}{4}\) inch (6.4 mm) may be used as a finish material where Class C materials are required.

13. 303 Siding applied directly to studs is adequate to resist inward-acting forces and outward-acting forces caused by wind pressures determined in accordance with IBC Section 1609, except where wind velocities exceed the nominal design wind speed, \(V_{\text{ad}}\), of 105 mph (170 km/h) or the ultimate design wind speed, \(V_{\text{ut}}\), of 135 mph (215 km/h), under which circumstances the 303 Siding must be attached to intermediate studs at wall corners (as defined in the applicable code), with nails spaced a maximum of 6 inches (152 mm) on center.

4.7 Fire-resistive Construction:

As an alternate to plywood of the same thickness, structural-use panels may be used in one-hour fire-resistive floor-ceiling or roof-ceiling assemblies permitted by the applicable code. In lieu of \(\frac{3}{16}\)-inch-thick (11.9 mm) or \(\frac{3}{16}\)-inch-thick (12.7 mm) plywood, two-layer assemblies are permitted to be constructed with \(\frac{3}{16}\)-inch-thick (11.1 mm), nonveneer rated sheathing (span-rated 24/16). The \(\frac{3}{16}\)-inch- or \(\frac{3}{16}\)-inch-thick (27.8 mm or 28.6 mm) Sturd-I-Floor (rated 48 oc) panels may be substituted for the double-wide floor for one-hour wood-floor construction.

Structural-use panels may be installed between the fire protection and the wood studs on either the interior or exterior side of fire-resistance-rated wood frame wall and partition assemblies described in the applicable code, provided the length of fasteners is adjusted for the added thickness of the panel.

Tongue-and-groove structural-use panels that are either \(\frac{3}{16}\)-inch or \(\frac{1}{4}\) inch (27.8 mm or 28.6 mm) thick, with exterior glue, may be substituted for the plywood permitted in the code for heavy timber roof decks in Type IV construction.

4.8 Interior Finish:

Structural-use panels with a minimum nominal thickness of \(\frac{1}{4}\) inch have a Class C finish classification when tested in accordance with ASTM E84.

4.9 Thermal Resistance:

Structural-use panels have a thermal resistance (R-value) as noted in Table 3.

4.10 Light Frame Construction Wall Assemblies:

For the 2018 and 2015 IRC and IECC, calculations of the overall-assembly thermal transmittance values, or U-factors, shall meet the requirements of 2018 and 2015 IECC Table R402.1.4 and 2018 and 2015 IRC Table N1102.1.4, for light frame wood wall assemblies. These U-factors can be used in either the U-factor alternative (2018 and 2015 IECC Section R402.1.4 and 2015 IRC Section N1102.1.4), the Total UA alternative (2018 and 2015 IECC Section R402.1.5 and 2018 and 2015 IRC...
Section N1102.1.5); the simulated performance alternative (2018 and 2015 IECC Section R405 or 2018 and 2015 IRC Section N1105) or the energy rating index compliance alternative (2018 and 2015 IECC Section R406 and 2018 and 2015 IRC Section N1106).

For the 2012 IRC and IECC, Table 4 lists light frame wood wall assemblies meeting the requirements of 2012 IECC Table R402.1.1 and 2012 IRC Table N1102.1.1. The corresponding overall-assembly thermal transmittance, or U-factor, is listed for a given set of assumptions for use in either the U-factor alternative (2012 IECC Section R402.1.3 and 2012 IRC Section N1102.1.3), the Total UA alternative (2012 IECC Section R402.1.4 or 2012 IRC Section N1102.1.4) or the simulated performance alternative (2012 IECC Section R405 or 2012 IRC Section N1105).

5.0 CONDITIONS OF USE

The Performance Standards and Qualification Policy for Structural-Use Panels, and the Performance Standard for 303 Siding, described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

5.1 The scope of this evaluation report is limited to the evaluation of the document Performance Standards and Qualification Policy for Wood Structural Panels promulgated by APA—The Engineered Wood Association and the installation requirements noted in Section 4.0 of this report. Evaluation of manufactured products is outside the scope of this report.

5.2 Span ratings and load capacities are based on untreated panels or plywood panels treated only with preservatives in accordance with AWPA U1 Section 6.F. Structural performance characteristics of FRTW panels are outside the scope of this report.

6.0 EVIDENCE SUBMITTED

6.1 Test data, material specifications, and descriptive brochures.

7.0 IDENTIFICATION

7.1 Identification of structural-use panels and 303 siding shall meet the requirements of Performance Standards and Qualification Policy for Wood Structural Panels promulgated by APA—The Engineered Wood Association.

7.2 The report holder’s contact information is the following:

APA—THE ENGINEERED WOOD ASSOCIATION
701 1 SOUTH 19TH STREET
TACOMA, WASHINGTON 98466
(253) 565-6600
www.apawood.org
help@apawood.org

<table>
<thead>
<tr>
<th>ITEM NUMBER</th>
<th>MINIMUM NET PANEL THICKNESS AT ANY POINT AFTER FACE TREATMENT (with no minus tolerance) (inch)</th>
<th>MINIMUM NUMBER OF PLYS IN PANEL</th>
<th>SPECIES GROUP OF CROSSBAND REMAINING INTACT</th>
<th>MINIMUM THICKNESS OF CROSSBAND REMAINING INTACT (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/32</td>
<td>3</td>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>2</td>
<td>9/32</td>
<td>3</td>
<td>2 or 3</td>
<td>1/8</td>
</tr>
<tr>
<td>3</td>
<td>9/32</td>
<td>5</td>
<td>1 or 2</td>
<td>1/8</td>
</tr>
<tr>
<td>4</td>
<td>9/32</td>
<td>5</td>
<td>3 or 4</td>
<td>1/8</td>
</tr>
<tr>
<td>5</td>
<td>11/32</td>
<td>3</td>
<td>1-2 or 3</td>
<td>1/8</td>
</tr>
<tr>
<td>6</td>
<td>11/32</td>
<td>3</td>
<td>1-2 or 3</td>
<td>1/8</td>
</tr>
<tr>
<td>7</td>
<td>11/32</td>
<td>5</td>
<td>4</td>
<td>1/8</td>
</tr>
<tr>
<td>8</td>
<td>11/32</td>
<td>5</td>
<td>4</td>
<td>1/8</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

<table>
<thead>
<tr>
<th>MINIMUM NOMINAL THICKNESS (inches)</th>
<th>SPECIES GROUP NO.</th>
<th>MAXIMUM SPAN (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15/32</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>19/32</td>
<td>2, 3, 4</td>
<td>16</td>
</tr>
<tr>
<td>19/32</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>19/32</td>
<td>2, 3, 4</td>
<td>24</td>
</tr>
<tr>
<td>23/32</td>
<td>1, 2, 3, 4</td>
<td>32</td>
</tr>
<tr>
<td>11/8</td>
<td>1, 2, 3, 4</td>
<td>48</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 psf = 48 Pa.

1Plywood continuous over two or more spans, long dimension across supports. Uniform load deflection limit is 1/480 of the span under live load. Live load capacity at maximum span for all listed construction is 30 psf.
TABLE 3—SHEATHING THERMAL RESISTANCE (R-VALUES)

<table>
<thead>
<tr>
<th>THICKNESS (in.)</th>
<th>R-VALUE °F.ft².h/Btu at 75°F MEAN TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/16</td>
<td>0.62⁴</td>
</tr>
<tr>
<td>1/2</td>
<td>0.68¹</td>
</tr>
</tbody>
</table>

Oriented Strand Board (OSB) per PS-2

<table>
<thead>
<tr>
<th>Plywood per PS-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5/8</td>
</tr>
<tr>
<td>3/4</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm; 1°F.ft².h/Btu = 0.176 °C.m²/W.

¹Per 2009 ASHRAE Handbook of Fundamentals, Chapter 26, Table 4.
²Per Methodology for Developing the REScheck Software through Version 4.4.3, Section A.2, Table A.10.

TABLE 4—WOOD FRAME WALL ASSEMBLIES MEETING THE REQUIREMENTS OF 2012 IECC TABLE R402.1.1 AND 2012 IRC TABLE N1102.1.1, AND RESULTING U-FACTORS

<table>
<thead>
<tr>
<th>CLIMATE ZONES</th>
<th>WOOD FRAME WALL INSULATION COMPONENT R-VALUE</th>
<th>LATERAL BRACING COMPONENT R-VALUES¹</th>
<th>U-FACTOR²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>13</td>
<td>Cont. plywood sheathing - 0.83</td>
<td>0.082</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cont. 7/16 OSB sheathing - 0.62</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Let-in bracing – 0.03</td>
<td>0.089</td>
</tr>
<tr>
<td>3,4,5</td>
<td>13+5ci</td>
<td>Cont. plywood sheathing - 0.83</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cont. 7/16 OSB sheathing - 0.62</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Let-in bracing – 0.03</td>
<td>0.060</td>
</tr>
<tr>
<td>3,4,5</td>
<td>20</td>
<td>Cont. plywood sheathing - 0.83</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cont. 7/16 OSB sheathing - 0.62</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Let-in bracing – 0.03</td>
<td>0.062</td>
</tr>
<tr>
<td>6,7,8</td>
<td>13+10ci</td>
<td>Cont. plywood sheathing - 0.83</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cont. 7/16 OSB sheathing - 0.62</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Let-in bracing – 0.03</td>
<td>0.045</td>
</tr>
<tr>
<td>6,7,8</td>
<td>20+5ci</td>
<td>Cont. plywood sheathing - 0.83</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cont. 7/16 OSB sheathing - 0.62</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Let-in bracing – 0.03</td>
<td>0.046</td>
</tr>
</tbody>
</table>

¹Based on Table 3
²U-factors are calculated with the following component R-value assumptions:
 • Outside air film – 0.25 (per 2009 ASHRAE Handbook of Fundamentals, Chapter 26, Table 1)
 • Wood siding – 0.59 (per 2009 ASHRAE Handbook of Fundamentals, Chapter 26, Table 4)
 • Lateral bracing (as noted)
 • Wood stud – 4.38 (2x4), 6.88 (2x6) (per ANSI Standard 90.1-2010, Section A.9, Table A9.4D)
 • 25% framing factor (per Methodology for Developing the REScheck Software through Version 4.4.3, Section A.2).
 • 1/2" gypsum wallboard – 0.45 (per ANSI Standard 90.1-2010, Section A.9, Table A9.4D)
 • Inside air film – 0.68 (per 2009 ASHRAE Handbook of Fundamentals, Chapter 26, Table 1)
 • Let-in bracing in lieu of structural sheathing (Thermal resistance of 1x4 wood let-in-bracing accounted for in framing factor assumption).

FIGURE 1—DETAIL OF STAPLE IN TONGUE-AND-GROOVE JOINT OF STURD-I-FLOOR 48-INCH ON CENTER

For SI: 1 in = 25.4 mm
1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that the APA performance standards, described in the ICC-ES evaluation report ESR-2586, have also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:
- 2020 City of Los Angeles Building Code (LABC)
- 2020 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The APA performance standards, described in Sections 2.0 through 7.0 of the evaluation report ESR-2586, comply with the LABC Chapter 23, and the LARC, and are subject to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The APA performance standards, described in this evaluation report supplement must comply with all the following conditions:

- All applicable sections in the evaluation report ESR-2586.
- The design, installation, conditions of use and identification are in accordance with the 2018 International Building Code® (IBC) and International Residential Code® (IRC) provisions noted in the evaluation report ESR-2586.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- Sheathing used as wall bracing in conventional light-frame construction must comply with the additional requirements of LABC Section 2308.6.
- Diaphragms and shear walls must comply with the additional requirements of LABC Chapter 23 Section 2306.2 and 2306.3, respectively.

This supplement expires concurrently with the evaluation report, reissued July 2019 and revised March 2020.