DIVISION: 03 00 00—CONCRETE
SECTION: 03 16 00—CONCRETE ANCHORS
DIVISION: 05 00 00—METALS
SECTION: 05 05 19—POST-INSTALLED CONCRETE ANCHORS

REPORT HOLDER:

FISCHERWERKE GMBH & CO. KG

EVALUATION SUBJECT:

FISCHER FH II CARBON STEEL HEAVY DUTY SLEEVE ANCHOR FOR ANCHORING IN CRACKED AND UNCRACKED CONCRETE
1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2013 Abu Dhabi International Building Code (ADIBC)†

†The ADIBC is based on the 2009 IBC. 2009 IBC code sections referenced in this report are the same sections in the ADIBC.

Property evaluated:

Structural

2.0 USES

The fischer FH II Carbon Steel Heavy Duty Sleeve Anchor is used as anchorage to resist static, wind and seismic tension and shear loads in cracked and uncracked normal-weight and lightweight concrete having a specified compressive strength, f'_c, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

The fischer FH II anchors comply as anchors installed in hardened concrete in accordance with Section 1901.3 of the 2018 and 2015 IBC, Section 1909 of the 2012 IBC, Section 1912 of the 2009 IBC. The fischer FH II anchors are an alternative to cast-in-place anchors described in Section 1901.3 of the 2018 and 2015 IBC, Section 1908 and 1909 of the 2012 IBC, and Section 1911 and 1912 of the 2009 IBC. The anchors may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

3.0 DESCRIPTION

3.1 FH II Carbon Steel Heavy Duty Sleeve Anchor:

3.1.1 General: The fischer FH II Carbon Steel Heavy Duty Sleeve Anchor, designated as the FH II, is a torque-controlled, sleeve-type mechanical expansion anchor. The components, dimensions and installation criteria are set forth in Tables 1, 2 and 4, and Figures 1, 2 and 3 of this report. Four head configurations are available: Version S, Version B, Version H and Version SK. The head configurations are illustrated in Figure 3. All carbon steel parts have a minimum 0.0002 inch (5 μm) thick galvanized zinc coating according to DIN EN ISO 4042.

Application of torque at the head of the anchor causes the cone to be drawn into the expansion sleeve. This cone movement in turn causes the expansion sleeve to expand against the wall of the drilled hole. The ribs on the collapsible sleeve prevent rotation of the expansion sleeve and cone during application of torque. Application of the specified installation torque induces a tension force in the concrete acting through the component being fastened. Telescopic deformation of the collapsible sleeve prevents buildup of pre-compression in the expansion sleeve in cases where the steel sleeve is in contact with the washer, and permits the closure of gaps between the work surface and the component being fastened. Application of tension loads that exceed the pre-compression force in the anchor will cause the cone to displace further into the expansion sleeve (follow-up expansion), generating additional expansion force.

3.1.2 FH II S (Hexagonal Screw Version): The anchor consists of an ISO 898-1, Class 8.8 hexagonal screw, steel washer, steel sleeve, collapsible plastic sleeve, steel expansion sleeve and steel cone. This anchor is available in carbon steel only. The material specifications are as follows:

- Hexagonal screw: Carbon steel complying with ISO 898-1, Class 8.8
- Washer: Carbon steel complying with EN 10139.
- Expansion cone: Carbon steel complying with EN 10277.
- Expansion sleeve: Carbon steel complying with EN 10305.
- Steel sleeve: Carbon steel complying with EN 10305-1.
3.1.3 FH II B (Bolt Version with Threaded Rod): The FH II B has the same components and material specifications as the FH II S (hexagonal screw) except that the hexagonal screw is replaced by a carbon steel threaded rod complying with ISO 898-1 Class 8.8 and a carbon steel hexagonal nut complying with ISO 898-2.

3.1.4 FH II H (Hexagonal Cap Nut Version): The FH II H has the same components and material specifications as the FH II B (bolt) except that a carbon steel hexagonal cap nut complying with ISO 898-2 replaces the nut.

3.1.5 FH II SK (Countersunk Screw Version): The FH II SK has the same components and material specifications as the FH II S (hexagonal screw) except that the hexagonal screw head is configured for countersunk applications, is configured to accept a hexagonal Allen wrench, and is provided with a conical washer. The screw is formed from carbon steel complying with ISO 898-1 and the conical washer is formed from carbon steel complying with EN 10277.

3.2 Concrete:
Normal-weight and lightweight concrete must conform to Sections 1903 and 1905 of the IBC, as applicable.

4.0 DESIGN AND INSTALLATION

4.1 Strength Design:

4.1.1 General: Design strength of anchors complying with the 2018 and 2015 IBC, as well as Section R301.1.3 of the 2018 and 2015 IRC must be determined in accordance with ACI 318-14 Chapter 17 and this report.

Design strength of anchors complying with the 2012 IBC, as well as Section R301.1.3 of the 2012 IRC, must be in accordance with ACI 318-11 Appendix D and this report.

Design strength of anchors complying with the 2009 IBC as well as Section R301.1.3 of the 2009 IRC must be in accordance with ACI 318-08 Appendix D and this report.

Design parameters are based on the 2018 and 2015 IBC (ACI 318-14) and the 2012 IBC (ACI 318-11) unless noted otherwise in Sections 4.1.1 through 4.1.12 of this report. The strength design of anchors must comply with ACI 318-14 17.3.1 or ACI 318-11 D.4.1, as applicable, except as required in ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable.

Strength reduction factors, \(\phi \), as given in ACI 318-14 Section 17.3.3 or ACI 318-11 D.4.3, as applicable, and noted in Table 3 of this report, must be used for load combinations calculated in accordance with Section 1605.2 of the IBC, Section 5.3 of ACI 318-14 or Section 9.2 of ACI 318-11 as applicable. Strength reduction factors, \(\phi \), as given in ACI 318-11 D.4.4 must be used for load combinations calculated in accordance with ACI 318-11 Appendix C.

The value of \(f'c \) used in the calculations must be limited to 8,000 psi (55.2 MPa) maximum, in accordance with ACI 318-14 17.2.7 or ACI 318-11 D.3.7, as applicable.

4.1.2 Requirements for Static Steel Strength in Tension, \(N_{st} \): The nominal steel strength of a single anchor in tension must be calculated in accordance with ACI 318-14 17.4.1.2 or ACI 318-11 D.5.1.2, as applicable. The value of \(N_{st} \) is given in Table 3 of this report. Strength reduction factors, \(\Phi \), corresponding to ductile steel elements may be used for the FH II.

4.1.3 Requirements for Concrete Breakout Strength in Tension, \(N_{cb} \) and \(N_{cbr} \): The nominal concrete breakout strength of a single anchor or group of anchors in tension, \(N_{cb} \) and \(N_{cbr} \), respectively, must be calculated in accordance with ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, with modifications as described in this section. The basic concrete breakout strength of a single anchor in tension, \(N_{p} \), must be calculated according to ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable, using the values of \(k_{c} \) and \(h_{et} \) as given in Table 3 of this report. The nominal concrete breakout strength in tension in regions where analysis indicates no cracking at service loads in accordance with ACI 318-14 17.4.2.6 or ACI 318-11 D.5.2.6, as applicable, shall be calculated with \(\Psi_{c} = 1.0 \) and using the value of \(k_{uncr} \) as given in Table 3 of this report.

4.1.4 Requirements for Critical Edge Distance, Splitting: In applications where \(c < c_{ac} \) and supplemental reinforcement to control splitting of the concrete is not present, the concrete breakout strength in tension for uncracked concrete, calculated according to ACI 318-14 17.4.2 or ACI 318-11 D.5.2, must be further multiplied by the factor \(\Psi_{cp,N} \) as given by the following equation:

\[
\Psi_{cp,N} = \frac{c}{c_{ac}}
\]

whereby the factor \(\Psi_{cp,N} \) need not to be taken as less than \(\frac{1.5h_{et}}{c_{ac}} \).

For all other cases \(\Psi_{cp,N} = 1.0 \). In lieu of ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable, values for the critical edge distance, \(c_{ac} \), provided in Table 4 of this report, must be used.

4.1.5 Requirements for pullout strength in tension, \(N_{p} \): The nominal pullout strength of a single anchor in tension in accordance with ACI 318-14 17.4.3.1 and 17.4.3.2 or ACI 318-11 D.5.3.1 and D.5.3.2 as applicable, in cracked and uncracked concrete, \(N_{p,ac} \) and \(N_{p,uncr} \) respectively, does not need to be evaluated.

4.1.6 Requirements for Static Steel Strength in Shear, \(V_{sb} \): In lieu of the value of the nominal steel strength values of \(V_{sb} \) as given in ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable, in shear, the values of \(V_{sb} \) for single anchor given in Table 3 of this report shall be used and not derived by calculation. Strength reduction factors, \(\Phi \), corresponding to ductile elements, may be used for the FH II.

4.1.7 Requirements for Static Concrete Breakout Strength in Shear \(V_{cb} \) or \(V_{cbg} \): The nominal concrete breakout strength of a single anchor or group of anchors in shear, \(V_{sb} \) or \(V_{sbg} \), respectively must be calculated in accordance with ACI 318-14 17.5.2 or ACI 318-11 D.6.2, as applicable, with modifications as described in this section. The basic concrete breakout strength of a single anchor in shear, \(V_{cb} \), must be calculated in accordance with ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable, using the value of \(k_{cr} \) given in Table 3 of this report.

4.1.8 Requirements for Static Concrete Pryout Strength in Shear \(V_{cp} \) or \(V_{cpg} \): The nominal concrete pryout strength of a single anchor or group of anchors in shear, \(V_{cp} \) or \(V_{cpg} \), must be calculated in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, modified by using the value of \(k_{p} \) provided in Table 3 of this report and the value of \(N_{cb} \) or \(N_{cbr} \) as calculated in accordance with Section 4.1.3 of this report.

4.1.9 Requirements for Minimum Member Thickness, Minimum Anchor Spacing and Minimum Edge Distance: In lieu of ACI 318-14 17.7.5 or ACI 318-11 D.8.5, as applicable, minimum member thickness, \(t_{min} \), must comply with Table 4 of this report. In lieu of ACI 318-
4.1.10 Requirements for Seismic Design:

4.1.10.1 General: For load combinations including seismic, the design must be performed according to ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable. Modifications to ACI 318-14 17.2.3 shall be applied under Section 1905.1.8 of the 2018 and 2015 IBC. For the 2012 IBC, Section 1905.1.9 shall be omitted. Modifications to ACI 318-08 D.3.3, shall be applied under Section 1908.1.9 of the 2009 IBC.

The nominal steel strength and the nominal concrete breakout strength for anchors in tension, and the nominal concrete breakout strength and pryout strength for anchors in shear, must be calculated according to ACI 318-14 17.4 and 17.5 or ACI 318-11 D.5 and D.6, respectively, taking into account the corresponding values in Table 3 and 4 of this report. The anchors comply with ACI 318-14 2.3 and ACI 318-11 D.1, as applicable, as ductile steel elements and must be designed in accordance with ACI 318-14 17.2.3.4, 17.2.3.5, 17.2.3.6 or 17.2.3.7; ACI 318-11 D.3.3.4, D.3.3.5, D.3.3.6 or D.3.3.7; ACI 318-08 D.3.3.4, D.3.3.5 or D.3.3.6, as applicable.

4.1.10.2 Seismic Tension: The nominal steel strength and nominal concrete breakout strength for anchors in tension must be calculated according to ACI 318-14 17.4.1 and 17.4.2 or ACI 318-11 D.5.1 and D.5.2, respectively, as applicable, as described in Sections 4.1.2 and 4.1.3 of this report and in accordance with ACI 318-14 17.4.3.2 or ACI 318-11 Section D.5.3.2, as applicable. The value for pullout strength in tension for seismic loads, \(N_{eq} \), does not need to be evaluated.

4.1.10.3 Seismic Shear: The nominal concrete breakout strength and pryout strength for anchors in shear must be calculated according to ACI 318-14 17.5.2 and 17.5.3 or ACI 318-11 D.6.2 and D.6.3, respectively, as applicable, as described in Sections 4.1.7 and 4.1.8 of this report. In accordance with ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable, the appropriate value for nominal steel strength in shear for seismic loads, \(V_{eq} \), described in Table 3 of this report must be used in lieu of \(V_{sa} \). Strength reduction factors, \(\Phi \), corresponding to ductile elements must be used for the FH II.

4.1.11 Requirements for Interaction of Tensile and Shear Forces: For loadings that include combined tension and shear, the design must be performed in accordance with ACI 318-14 17.6 or ACI 318-11 D.7, as applicable.

4.1.12 Lightweight Concrete: For the use of anchors in lightweight concrete, the modification factor \(A_0 \) equal to 0.8 is applied to all values of \(\sqrt{f_{c}'} \) affecting \(N_a \) and \(V_n \).

For ACI 318-14 (2018 and 2015 IBC), ACI 318-11 (2012 IBC) and ACI 318-08 (2009 IBC), \(\lambda \) shall be determined in accordance with the corresponding version of ACI 318.

4.2 Allowable Stress Design (ASD):

4.2.1 General: Design values for use with allowable stress design load combinations calculated in accordance with Section 1605.3 of the IBC shall be established using Eq-2 and Eq-3:

\[
T_{\text{allowable, ASD}} = \frac{\phi N_n}{\alpha} \quad (\text{Eq-2})
\]

\[
V_{\text{allowable, ASD}} = \frac{\phi V_n}{\alpha} \quad (\text{Eq-3})
\]

where:

\[\phi N_n = \text{Lowest design strength of an anchor or anchor group in tension as determined in accordance with ACI 318-14 Chapter 17 and 2018 and 2015 IBC Section 1905.1.8, ACI 318-11 Appendix D, ACI 318-08 Appendix D and 2009 IBC Section 1908.1.9 and Section 4.1 of this report, as applicable. For the 2012 IBC, Section 1905.1.9 shall be omitted.}\]

\[\phi V_n = \text{Lowest design strength of an anchor or anchor group in shear as determined in accordance with ACI 318-14 Chapter 17 and 2018 and 2015 IBC Section 1905.1.8, ACI 318-11 Appendix D, ACI 318-08 Appendix D and 2009 IBC Section 1908.1.9 and Section 4.1 of this report, as applicable. For the 2012 IBC, Section 1905.1.9 shall be omitted.}\]

\[\alpha = \text{Conversion factor calculated as a weighted average of the load factors for the controlling load combination. In addition, } \alpha \text{ shall include all applicable factors to account for non ductile failure modes and required over-strength.}\]

An example of allowable stress design values for illustrative purposes is shown in Table 5 of this report.

4.2.2 Interaction of Tensile and Shear Forces: The interaction must be calculated in accordance and consistent with ACI 318-14 17.6 or ACI 318 (-11 and -08) D.7 as follows:

For shear loads \(V \leq 0.2 \ V_{\text{allowable, ASD}} \), the full allowable load in tension \(T_{\text{allowable, ASD}} \) must be permitted.

For tension loads \(T \leq 0.2 \ T_{\text{allowable, ASD}} \), the full allowable load in shear \(V_{\text{allowable, ASD}} \) must be permitted.

For all other cases Eq-4 applies:

\[
\frac{T}{T_{\text{allowable, ASD}}} + \frac{V}{V_{\text{allowable, ASD}}} \leq 1.2 \quad (\text{Eq-4})
\]

4.3 Installation:

Installation parameters are provided in Tables 2 and 4 and in Figure 2 of this report. Anchor locations must be in accordance with this report and the plans and specifications approved by the code official. The FH II anchors must be installed according to the manufacturer’s published instructions and this report. In case of conflict, this report governs. Anchors must be installed in holes drilled into the concrete using carbide-tipped masonry drill bits complying with the requirements of Table 2 of this report. The minimum drilled hole depth is given in Table 2. The predrilled hole must be cleaned free of dust and debris using a hand pump, compressed air or vacuum. The anchor must be hammered into the predrilled hole until the proper nominal embedment depth is achieved. The anchor must be tightened against the washer until the torque values \(T_{\text{inst}} \) specified in Table 2 of this report are achieved.
4.4 Special Inspection:
Periodic special inspection is required, in accordance with Section 1705.1.1 and Table 1705.3 of the 2018, 2015 or 2012 IBC, or section 1704.15 and Table 1704.4 of the 2009 IBC, as applicable. The special inspector must make periodic inspections during anchor installation to verify anchor type, anchor dimensions, concrete type, concrete compressive strength, hole dimensions, hole cleaning procedures, anchor spacing(s), edge distance(s), slab thickness, anchor embedment depth, tightening torque and adherence to the manufacturer’s published installation instructions. The special inspector must be present as often as required in accordance with the “statement of special inspection”. Under the IBC, additional requirements as set forth in Sections 1705, 1706 and 1707 must be observed, where applicable.

5.0 CONDITIONS OF USE
The FH II anchors described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

5.1 Anchor sizes, dimensions and minimum embedment depths are as set forth in this report.

5.2 The anchors must be installed in accordance with the manufacturer’s published installation instructions and this report. In case of a conflict, this report governs.

5.3 Anchors must be installed in cracked and uncracked normal-weight or lightweight concrete having a specified compressive strength, \(f_c' \) of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1].

5.4 The values of \(f_c' \) used for calculation purposes shall not exceed 8,000 psi (55.2 MPa).

5.5 Strength design values must be established in accordance with Section 4.1 of this report.

5.6 Allowable stress design values must be established in accordance with Section 4.2 of this report.

5.7 Anchor spacing(s) and edge distance(s) as well as minimum member thickness must comply with Table 4 of this report.

5.8 Prior to installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statues of the jurisdiction in which the project is to be constructed.

5.9 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of expansion anchors subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.

5.10 Anchors may be installed in regions of concrete where cracking has occurred or where analysis indicates cracking may occur \((f_i > f_t) \), subject to the conditions of this report.

5.11 Anchors may be used to resist short-term loading due to wind or seismic forces, subject to the conditions of this report.

5.12 Where not otherwise prohibited in the code, FH II anchors are permitted for use with fire-resistance-rated construction provided that at least one of the following conditions is fulfilled:
- Anchors are used to resist wind or seismic forces only.
- Anchors that support a fire-resistance-rated envelope or a fire-resistance-rated membrane, are protected by approved fire-resistance-rated materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
- Anchors are used to support nonstructural elements.

5.13 Use of zinc-coated carbon steel anchors is limited to dry, interior locations.

5.14 Special inspection must be provided in accordance with Section 4.4 of this report.

5.15 Anchors are manufactured by fischerwerke, under an approved quality control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED
Data in accordance with the ICC-ES Acceptance Criteria for Mechanical Anchors in Concrete Elements (AC193), dated October 2017 (Editorially revised April 2018), for use in cracked and uncracked concrete and quality control documentation.

7.0 IDENTIFICATION
7.1 The anchors can be identified on the packaging label with the manufacturer’s name (fischer) and address, anchor name, anchor size and evaluation report number (ESR-2691). The “fish” symbol, the letters FH II, the anchor diameter and the maximum fixing thickness are stamped on each anchor.

Example: (“fish”) FH II 24/25 S, means 24 mm outer anchor diameter, 25 mm maximum thickness of fixture, S stands for Hexagonal Screw Version.

7.2 The report holder’s contact information is the following:

fischerwerke GmbH & CO. KG
KLAS-FISCHER-STRASSE 1
72178 WALDACHTAL
GERMANY
+49 (0) 7443 12-0
www.fischer.de
anwendungstechnik@fischer.de
<table>
<thead>
<tr>
<th>Anchor Version</th>
<th>Nominal Bolt Diameter (mm)</th>
<th>(d_{bl}) (mm)</th>
<th>(d_1) (mm)</th>
<th>(L_1) (mm)</th>
<th>(t_{w1}) (mm)</th>
<th>(l_1) (mm)</th>
<th>(l_2) (mm)</th>
<th>(l_3) (mm)</th>
<th>(l_4) (mm)</th>
<th>(t_{washer}) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH II S</td>
<td>M8</td>
<td>12</td>
<td>12.0</td>
<td>74</td>
<td>0</td>
<td>250</td>
<td>11</td>
<td>30</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>M10</td>
<td>15</td>
<td>14.8</td>
<td>89</td>
<td>0</td>
<td>300</td>
<td>13</td>
<td>35.5</td>
<td>10.5</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>M12</td>
<td>18</td>
<td>17.8</td>
<td>99</td>
<td>0</td>
<td>350</td>
<td>16</td>
<td>41</td>
<td>15</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>M16</td>
<td>24</td>
<td>23.7</td>
<td>124</td>
<td>0</td>
<td>400</td>
<td>19</td>
<td>46</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>M20</td>
<td>28</td>
<td>27.5</td>
<td>148</td>
<td>0</td>
<td>600</td>
<td>22.4</td>
<td>50</td>
<td>17.5</td>
<td>61.5</td>
</tr>
<tr>
<td></td>
<td>M24</td>
<td>32</td>
<td>31.5</td>
<td>168</td>
<td>0</td>
<td>600</td>
<td>22.4</td>
<td>55</td>
<td>25</td>
<td>74</td>
</tr>
<tr>
<td>FH II B</td>
<td>M8</td>
<td>12</td>
<td>12.0</td>
<td>74</td>
<td>0</td>
<td>250</td>
<td>11</td>
<td>30</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>M10</td>
<td>15</td>
<td>14.8</td>
<td>89</td>
<td>0</td>
<td>300</td>
<td>13</td>
<td>35.5</td>
<td>10.5</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>M12</td>
<td>18</td>
<td>17.8</td>
<td>99</td>
<td>0</td>
<td>350</td>
<td>16</td>
<td>41</td>
<td>15</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>M16</td>
<td>24</td>
<td>23.7</td>
<td>124</td>
<td>0</td>
<td>400</td>
<td>19</td>
<td>46</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>M20</td>
<td>28</td>
<td>27.5</td>
<td>148</td>
<td>0</td>
<td>600</td>
<td>22.4</td>
<td>50</td>
<td>17.5</td>
<td>61.5</td>
</tr>
<tr>
<td></td>
<td>M24</td>
<td>32</td>
<td>31.5</td>
<td>168</td>
<td>0</td>
<td>600</td>
<td>22.4</td>
<td>55</td>
<td>25</td>
<td>74</td>
</tr>
<tr>
<td>FH II H</td>
<td>M10</td>
<td>15</td>
<td>14.8</td>
<td>89</td>
<td>0</td>
<td>300</td>
<td>13</td>
<td>35.5</td>
<td>10.5</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>M12</td>
<td>18</td>
<td>17.8</td>
<td>99</td>
<td>0</td>
<td>350</td>
<td>16</td>
<td>41</td>
<td>15</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>M16</td>
<td>24</td>
<td>23.7</td>
<td>124</td>
<td>0</td>
<td>400</td>
<td>19</td>
<td>46</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>FH II SK</td>
<td>M10</td>
<td>15</td>
<td>14.8</td>
<td>89</td>
<td>6</td>
<td>300</td>
<td>13</td>
<td>35.5</td>
<td>10.5</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>M12</td>
<td>18</td>
<td>17.8</td>
<td>99</td>
<td>6</td>
<td>350</td>
<td>16</td>
<td>41</td>
<td>15</td>
<td>26.5</td>
</tr>
</tbody>
</table>

For pound-inch units: 1 mm = 0.03937 inches

1 Figure 1 describes location of dimensions. All dimensions are nominal excluding manufacturing tolerances.

2 Figure 3 illustrates the available anchor versions.

3 Thickness applies to the attached fixture.

FIGURE 1—ANCHOR DIMENSIONAL CHARACTERISTICS
TABLE 2—INSTALLATION INFORMATION\(^1\)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Units</th>
<th>FH II 12 M8</th>
<th>FH II 15 M10</th>
<th>FH II 18 M12</th>
<th>FH II 24 M16</th>
<th>FH II 28 M20</th>
<th>FH II 32 M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal drill hole diameter(^2)</td>
<td>(d_{bit})</td>
<td>mm</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>24</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td>Cutting diameter of drill bit</td>
<td>(d_{bit,min})</td>
<td>mm</td>
<td>12.10</td>
<td>15.10</td>
<td>18.10</td>
<td>24.10</td>
<td>28.10</td>
<td>32.15</td>
</tr>
<tr>
<td></td>
<td>(d_{bit,max})</td>
<td>mm</td>
<td>12.50</td>
<td>15.50</td>
<td>18.50</td>
<td>24.55</td>
<td>28.55</td>
<td>32.70</td>
</tr>
<tr>
<td>Minimum drill hole depth (h_{t,min}) (\geq)</td>
<td></td>
<td>mm</td>
<td>80</td>
<td>90</td>
<td>105</td>
<td>125</td>
<td>155</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in.</td>
<td>3.15</td>
<td>3.54</td>
<td>4.13</td>
<td>4.92</td>
<td>6.10</td>
<td>7.09</td>
</tr>
<tr>
<td>Diameter of clearance hole in the fixture(^4)</td>
<td>(d_{c,H,B,S}\leq)</td>
<td>mm</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>26</td>
<td>31</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in.</td>
<td>0.55</td>
<td>0.67</td>
<td>0.79</td>
<td>1.02</td>
<td>1.22</td>
<td>1.38</td>
</tr>
<tr>
<td>Diameter of countersunk hole in the fixture</td>
<td>(d_{c,SK})</td>
<td>mm</td>
<td>-</td>
<td>24.5</td>
<td>31.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in.</td>
<td>-</td>
<td>0.97</td>
<td>1.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Required installation torque</td>
<td>(T_{inst})</td>
<td>Nm</td>
<td>22.5</td>
<td>40</td>
<td>80</td>
<td>160</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>Type S</td>
<td></td>
<td>ft-lbf</td>
<td>17.5</td>
<td>38</td>
<td>80</td>
<td>120</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>Type SK</td>
<td></td>
<td>Nm</td>
<td>16.6</td>
<td>29.5</td>
<td>59.0</td>
<td>118.0</td>
<td>132.8</td>
<td>147.5</td>
</tr>
<tr>
<td>Type H</td>
<td></td>
<td>ft-lbf</td>
<td>-</td>
<td>29.5</td>
<td>59.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Type B</td>
<td></td>
<td>Nm</td>
<td>12.9</td>
<td>28.0</td>
<td>59.0</td>
<td>88.5</td>
<td>132.8</td>
<td>147.5</td>
</tr>
<tr>
<td>Type S</td>
<td></td>
<td>mm</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>24</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>Type SK</td>
<td></td>
<td>mm</td>
<td>-</td>
<td>6</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Type H</td>
<td></td>
<td>mm</td>
<td>-</td>
<td>17</td>
<td>19</td>
<td>24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Type B</td>
<td></td>
<td>mm</td>
<td>13</td>
<td>17</td>
<td>19</td>
<td>24</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>Washer Diameter</td>
<td>(d_w)</td>
<td>mm</td>
<td>(\geq 20)</td>
<td>(\geq 24)</td>
<td>(\geq 28)</td>
<td>(\geq 36)</td>
<td>(\geq 40)</td>
<td>(\geq 46)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in.</td>
<td>(\geq 0.79)</td>
<td>(\geq 0.95)</td>
<td>(\geq 1.10)</td>
<td>(\geq 1.42)</td>
<td>(\geq 1.57)</td>
<td>(\geq 1.81)</td>
</tr>
</tbody>
</table>

For pound-inch units: 1 mm = 0.03937 inches, 1 Nm = 0.7376 ft-lbf.

\(^1\)All specifications excluding manufacturing tolerances.
\(^2\)Only metric drill bits must be used.
\(^3\)For Type SK Allen wrench size.
\(^4\)Tolerances complying with ISO 273

Installation:

1. Using the correct metric bit diameter, \(d_{bit}\) (Table 2), drill hole to minimum required hole depth \(h_{t,min}\) (Table 2) or deeper.
2. Remove drilling debris with a blowout bulb or with compressed air.
3. Using a hammer, tap the anchor through the part being fastened into the drilled hole until the washer is in contact with the fastened part. Do not expand anchor prior to installation.
4. Using a torque wrench, apply the specified installation torque \(T_{inst}\) (Table 2).
FIGURE 2—CORRECT INSTALLED ANCHOR

FIGURE 3—FH II HEAD CONFIGURATIONS

Screw type S
FH II 12 – 32
M8 – M24

Marking: Identifying mark of the producer, anchor identity
ential drill hole diameter / max. thickness of fixture
 e.g. FH II 15/25

Type with countersunk screw
head SK FH II 15 – 18
M10 + M12

Type with cap nut H
FH II 15 – 24
M10 - M16

Bolt type B
FH II 12 – 32
M8 – M24

1. Hexagon screw
2. Countersunk screw
3. Cap nut
4. Hexagon nut
5. Threaded rod
6. Conical nut
7. Spacer sleeve
8. Expansion sleeve
9. Plastic sleeve
10. Washer
11. Conical washer
<table>
<thead>
<tr>
<th>Design parameter</th>
<th>Symbol</th>
<th>Units</th>
<th>FH II</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
<th>M16</th>
<th>M20</th>
<th>M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside diameter of anchor</td>
<td>da</td>
<td>mm</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>24</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in.</td>
<td>0.47</td>
<td>0.59</td>
<td>0.71</td>
<td>0.94</td>
<td>1.10</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>Effective min. embedment depth</td>
<td>h_{ef,min}</td>
<td>mm</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in.</td>
<td>2.36</td>
<td>2.76</td>
<td>3.15</td>
<td>3.94</td>
<td>4.92</td>
<td>5.91</td>
<td></td>
</tr>
<tr>
<td>Anchor category</td>
<td></td>
<td></td>
<td>1,2 or 3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Strength reduction factor for tension, steel failure modes</td>
<td>\phi</td>
<td></td>
<td>-</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength reduction factor for shear, steel failure modes</td>
<td>\phi</td>
<td></td>
<td>-</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength reduction factor for tension, concrete failure modes</td>
<td>\phi</td>
<td></td>
<td>Cond.A</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cond.B</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength reduction factor for shear, concrete failure modes</td>
<td>\phi</td>
<td></td>
<td>Cond.A</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cond.B</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield strength of anchor steel</td>
<td>f_{ya}</td>
<td>N/mm²</td>
<td>640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lbf/in.²</td>
<td>92,824</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultimate strength of anchor steel</td>
<td>f_{uta}</td>
<td>N/mm²</td>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lbf/in.²</td>
<td>116,030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile stress area</td>
<td>A_{se}</td>
<td>mm²</td>
<td>36.6</td>
<td>58.0</td>
<td>84.3</td>
<td>156.7</td>
<td>244.8</td>
<td>352.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in.²</td>
<td>0.057</td>
<td>0.090</td>
<td>0.131</td>
<td>0.243</td>
<td>0.379</td>
<td>0.546</td>
<td></td>
</tr>
<tr>
<td>Steel strength in tension</td>
<td>N_{sa}</td>
<td>kN</td>
<td>29</td>
<td>46</td>
<td>67</td>
<td>125</td>
<td>196</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lbf</td>
<td>6,516</td>
<td>10,337</td>
<td>15,056</td>
<td>28,090</td>
<td>44,045</td>
<td>63,370</td>
<td></td>
</tr>
<tr>
<td>Effectiveness factor cracked concrete</td>
<td>k_{cr}</td>
<td>SI</td>
<td>7.1</td>
<td>8.8</td>
<td>8.8</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imp</td>
<td>17</td>
<td>21</td>
<td>21</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effectiveness factor cracked concrete</td>
<td>k_{uncr}</td>
<td>SI</td>
<td>11.3</td>
<td>11.3</td>
<td>11.3</td>
<td>12.6</td>
<td>12.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imp</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional effectiveness factor for uncracked concrete</td>
<td>\psi_{c,N}</td>
<td>SI</td>
<td>-</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Pullout strength uncracked concrete</td>
<td>N_{p,uncr}</td>
<td></td>
<td></td>
<td>not decisive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pullout strength cracked concrete</td>
<td>N_{p,cr}</td>
<td></td>
<td></td>
<td>not decisive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension pullout strength seismic</td>
<td>N_{eq}</td>
<td>not decisive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel strength in shear, SK</td>
<td>V_{sa}</td>
<td>kN</td>
<td>33</td>
<td>59</td>
<td>76</td>
<td>146</td>
<td>174</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lbf</td>
<td>7,419</td>
<td>13,264</td>
<td>17,085</td>
<td>32,822</td>
<td>39,117</td>
<td>48,784</td>
<td></td>
</tr>
<tr>
<td>Steel strength in shear, B, H</td>
<td>V_{sa}</td>
<td>kN</td>
<td>27</td>
<td>41</td>
<td>62</td>
<td>119</td>
<td>146</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lbf</td>
<td>6,070</td>
<td>9,217</td>
<td>13,938</td>
<td>26,752</td>
<td>32,822</td>
<td>37,993</td>
<td></td>
</tr>
<tr>
<td>Steel strength in shear, seismic S,SK</td>
<td>V_{eq}</td>
<td>kN</td>
<td>25</td>
<td>38</td>
<td>57</td>
<td>110</td>
<td>143</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb</td>
<td>5,620</td>
<td>8,543</td>
<td>12,814</td>
<td>24,729</td>
<td>32,148</td>
<td>39,117</td>
<td></td>
</tr>
<tr>
<td>Steel strength in shear, seismic B, H</td>
<td>V_{eq}</td>
<td>kN</td>
<td>17</td>
<td>31</td>
<td>46</td>
<td>98</td>
<td>119</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lb</td>
<td>3,822</td>
<td>6,969</td>
<td>10,341</td>
<td>22,031</td>
<td>26,752</td>
<td>37,993</td>
<td></td>
</tr>
<tr>
<td>Coefficient for pryout strength</td>
<td>K_{sp}</td>
<td>[-]</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective length of anchor in shear loading</td>
<td>l_{e}</td>
<td>mm</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>in.</td>
<td>0.94</td>
<td>1.18</td>
<td>1.42</td>
<td>1.88</td>
<td>2.20</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>Axial stiffness in service load range</td>
<td>\beta_{tm}</td>
<td>kN/mm</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>33</td>
<td>39</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10³lbf/in</td>
<td>120</td>
<td>137</td>
<td>154</td>
<td>188</td>
<td>223</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\beta_{lm}</td>
<td>kN/mm</td>
<td>65</td>
<td>91</td>
<td>118</td>
<td>171</td>
<td>224</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10³lbf/in</td>
<td>371</td>
<td>520</td>
<td>674</td>
<td>976</td>
<td>1,279</td>
<td>1,582</td>
<td></td>
</tr>
</tbody>
</table>

1Figure 2 illustrates the location of h_{ef,min}.
2ACI 318-14 17.3.3 and ACI 318-11 D.4.3 and D4.4 set forth the permitted strength reduction factor \(\phi \) based on anchor category.
3The FH II anchors are considered as ductile steel element as defined by ACI 318-14 2.3 and ACI 318-11 D.1.
4Condition A requires supplemental reinforcement, while Condition B applies where supplemental reinforcement is not provided or where pullout or pryout governs, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3(c). The tabulated value of \(\phi \) applies when the load combinations of Section 1605.2 of the IBC or ACI 318-14 5.3 or ACI 318-11 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \(\phi \) must be determined in accordance with ACI 318-11 D.4.4(c).
5Anchors are permitted to be used in lightweight concrete provided that the provisions in accordance with Section 4.1.12 of this report are taken into account.
6The value \(\psi_{c,N} = 1.0 \) for all design cases.
7As described in Section 4.1.5 of this report, pullout resistance is not decisive.
8All dimensions are nominal excluding manufacturing tolerances.
Table 4—Edge Distance, Spacing and Member Thickness Requirements

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Symbol</th>
<th>Units</th>
<th>FH II 12</th>
<th>FH II 15</th>
<th>FH II 18</th>
<th>FH II 24</th>
<th>FH II 28</th>
<th>FH II 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum thickness of concrete member</td>
<td>(h_{a,\text{min}})</td>
<td>[mm]</td>
<td>120</td>
<td>140</td>
<td>160</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[in.]</td>
<td>4.72</td>
<td>5.50</td>
<td>6.25</td>
<td>7.88</td>
<td>9.88</td>
<td>11.88</td>
</tr>
<tr>
<td>Minimum spacing</td>
<td>(s_{a,\text{min}})</td>
<td>[mm]</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>120</td>
<td>160</td>
<td>220</td>
<td>240</td>
<td>380</td>
</tr>
<tr>
<td>Minimum edge distance</td>
<td>(c_{a,\text{min}})</td>
<td>[mm]</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>140</td>
<td>200</td>
<td>240</td>
<td>260</td>
<td>400</td>
</tr>
<tr>
<td>Critical edge distance</td>
<td>(c_{ac})</td>
<td>[mm]</td>
<td>155</td>
<td>165</td>
<td>170</td>
<td>225</td>
<td>265</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.10</td>
<td>6.50</td>
<td>6.69</td>
<td>8.86</td>
<td>10.43</td>
<td>11.22</td>
</tr>
</tbody>
</table>

1. According to section 4.1.9 of this report.
2. According to section 4.1.4 of this report.
3. Intermediate values by linear interpolation.

Table 5—Example Allowable Stress Design Values for Illustrative Purposes

<table>
<thead>
<tr>
<th>Anchor type</th>
<th>Effective Embedment depth (h_{ef})</th>
<th>Allowable Tension Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH II 12 M8</td>
<td>2.36 in</td>
<td>2,150 lbf</td>
</tr>
<tr>
<td></td>
<td>60 mm</td>
<td>9.57 kN</td>
</tr>
<tr>
<td>FH II 15 M10</td>
<td>2.76 in</td>
<td>2,719 lbf</td>
</tr>
<tr>
<td></td>
<td>70 mm</td>
<td>12.05 kN</td>
</tr>
<tr>
<td>FH II 18 M12</td>
<td>3.15 in</td>
<td>3,315 lbf</td>
</tr>
<tr>
<td></td>
<td>80 mm</td>
<td>14.73 kN</td>
</tr>
<tr>
<td>FH II 24 M16</td>
<td>3.94 in</td>
<td>5,152 lbf</td>
</tr>
<tr>
<td></td>
<td>100 mm</td>
<td>22.77 kN</td>
</tr>
<tr>
<td>FH II 28 M20</td>
<td>4.92 in</td>
<td>7,189 lbf</td>
</tr>
<tr>
<td></td>
<td>125 mm</td>
<td>31.82 kN</td>
</tr>
<tr>
<td>FH II 32 M24</td>
<td>5.91 in</td>
<td>9,465 lbf</td>
</tr>
<tr>
<td></td>
<td>150 mm</td>
<td>41.83 kN</td>
</tr>
</tbody>
</table>

Design Assumptions:
1. Single anchor with static tension load only.
2. Concrete determined to remain uncracked for the life of the anchorage.
3. Load combinations from ACI 318-14 5.3 or ACI 318-11 9.2 (no seismic loading).
4. 30% dead load and 70% live load, controlling load combination 1.2 D + 1.6 L.
5. Calculation of weighted average for \(\alpha = 0.3 \times 1.2 + 0.7 \times 1.6 = 1.48 \).
6. \(f_c' = 2,500 \text{ psi (17.2 MPa)} \) (normal weight concrete).
7. \(c_{a1} = c_{a2} \geq c_{ac} \)
8. \(h \geq h_{min} \).
9. Condition B according to ACI 318-14 17.3.3 or ACI 318-11 D.4.3(c), no supplementary reinforcement is present.
Given:
2 x FH II 12 S (M8)
Slab on grade 5,076 psi
No supplementary reinforcement =>
Condition B per ACI 318-14 17.3.3 or ACI 318-11 D.4.3 c)
Assume cracked concrete
h_a = 4.72 in.
h_f = 2.36 in.
s_a = 3.94 in.
c_a = 3.15 in.

Calculate the allowable static tension load for this configuration.

Calculation according to ACI 318-14 Chapter 17, ACI 318-11 Appendix D and this report

Step 1. Verify minimum member thickness, spacing and edge distance:
Table 4: h_a = 4.72 in. ≥ h_a, min = 4.72 in.
⇒ ok
slope: \(\frac{4.75 - 2.36}{2.36 - 3.94} = -1.5 \)
For c_a = 3.15 in.
\(s_{min,calc} = [(3.15 - 3.94) \times (-1.5)] + 2.36 = 3.54 \text{ in.} \leq s_a = 3.94 \)
⇒ ok

Step 2. Calculate steel strength of anchor in tension
\(N_{sa} = 13,032 \text{ lbf} \)
Calculate steel capacity
\(\phi N_{sa} = 0.75 \times 13,032 = 9,774 \text{ lbf} \)

Step 3. Calculate concrete breakout strength of anchor in tension
\(N_{c0} = (1.5 h_{ef} + c_a) \times (3.15 h_{ef} + s_a) = [1.5 \times 2.36 + 3.15] \times [3 \times (2.36) + 3.94] = 73.72 \text{ in.}^2 \)
\(\phi N_{c0} = 1 \times N_{c0} = 73.72 \text{ lbf} \)

Step 3a. Check 1.5 h_{ef} ≥ 0.3 h_{ef} = 0.3 \times 2.36 = 0.708 \text{ in.} > s_a = 3.94

Step 3b. Calculate \(A_{Nc0} = 9x h_f \times c_a = 9(2.36)^2 = 50.13 \text{ in.}^2 \)
\(A_{Nc} = (1.5 h_f + c_a) \times (3 h_f + s_a) = [1.5 \times 2.36 + 3.15] \times [3 \times (2.36) + 3.94] = 73.72 \text{ in.}^2 \)
\(\phi N_{c} = 0.75 \times N_{c} = 55.34 \text{ lbf} \)

Step 3c. Calculate \(\psi_{ec,N} = 0 \Rightarrow \psi_{ec,N} = 1 \)

Step 3d. Calculate \(N_b = k_d \sqrt{f_c} \times h d_{1.5}^{1.5} = 17 \times \sqrt{5076} \times 2.36^{1.5} = 4391 \text{ lbf} \)

Step 3e. Calculate modification factor for edge distance:
\(\psi_{ed,N} = 0.7 + 0.3 \times \frac{c_{g,min}}{1.5 \times h_{ef}} = 0.7 + 0.3 \times \frac{3.15}{1.5 \times 2.36} = 0.97 < 1 \)

Step 3f. \(\psi_{c,N} = 1.0 \) (cracked concrete)

Step 3g. \(\psi_{cp,N} = 1.0 \)

Step 3h. Calculate \(N_{eq} = (73.72/50.13) \times 0.97 \times 1 \times 4.391 = 6264 \text{ lbf} \)

Step 4. Controlling strength: \(\phi N_{eq} = 0.65 \times 6264 = 4071 \text{ lbf} < \phi N_a = 9774 \text{ lbf} \)

Step 5. Calculate allowable stress design (30% dead load, 70% live load)
\(\alpha = 1.2 \times 0.3 + 1.6 \times 0.7 = 1.48 \Rightarrow T_{allowable, ASD} = 4071 / 1.48 = 2751 \text{ lbf} \)

FIGURE 4—EXAMPLE CALCULATION FOR TENSION CAPACITY (IMPERIAL UNITS)
Given:
- 2 x FH II 12 S (M8)
- Slab on grade 35 MPa
- No supplementary reinforcement
- Condition B per ACI 318-14 17.3.3 or ACI 318-11 D.4.3 c)
- Assume cracked concrete

\[h_a = 120 \text{ mm} \]
\[h_{ul} = 60 \text{ mm} \]
\[s_a = 100 \text{ mm} \]
\[c_u = 80 \text{ mm} \]

Calculate the allowable static and seismic tension load for this configuration.

Calculation according to ACI 318-14 Chapter 17, ACI 318-11 Appendix D and this report

<table>
<thead>
<tr>
<th>Step 1. Verify minimum spacing and edge distance:</th>
<th>Table 4: [h_a = 120 \text{ mm} \geq h_{x,min} = 120 \text{ mm}] => ok</th>
</tr>
</thead>
</table>

Slope:
\[\frac{120 - 60}{60 - 100} = -1.5 \]
For \(c_u = 80 \text{ mm} \)

\[s_{wmin,calc} = [(80-100)(-1.5)] + 60 = 90 \text{ mm} \leq s_a \]
=> ok

Step 2. Calculate steel strength of anchor in tension \(N_{sa} = n N_{sa} = 58 \text{ kN} \)

Calculate steel capacity \[\phi N_{sa} = 0.75 \times 58 = 43.5 \text{ kN} \]

Step 3. Calculate concrete breakout strength of anchor in tension

\[N_{cbg} = \frac{A_{Nc}}{A_{Nco}} \times \psi_{ec,N} \times \psi_{ed,N} \times \psi_{c,N} \times \psi_{cp,N} \times N_b \]

Step 3a. Check \[1.5 h_{ul} = 1.5 \times 60 = 90 \text{ mm} \quad c_u = 3.0 h_{ul} = 3.0 \times 60 = 180 \text{ mm} \geq s_a \]

Step 3b. Calculate \(A_{H0} \) and \(A_{He} \)

\[A_{H0} = (1.5 h_{ul} + c) \times (3 h_{ul} + s) = [1.5 \times 60 + 80] \times [3 \times 60 + 100] = 47,600 \text{ mm}^2 \]

\[< 2x A_{H0} \]

Step 3c. Calculate \(\psi_{ec,N} : e_u = 0 => \psi_{ec,N} = 1 \)

Step 3d. Calculate \(N_b = k_c \sqrt{f'_c} h_{ul}^{1.5} = 7 \times \sqrt{35} \times 60^{1.5} = 19,246 \text{ N} = 19.25 \text{ kN} \)

Step 3e. Calculate modification factor for edge distance:

\[\psi_{ed,N} = 0.7 + 0.3 \frac{c_a}{1.5 \times h_{ul}} = 0.7 + 0.3 \times \frac{80}{1.5 \times 60} = 0.97 < 1 \]

Step 3f. \(\psi_{c,N} = 1.0 \) (cracked concrete)

Step 3g. \(\psi_{cp,N} = 1.0 \)

Step 3h. Calculate \(N_{seg} = (47,600/32,400) \times 1 \times 0.97 \times 1 \times 19,246 = 27.33 \text{ kN} \)

Step 4. Controlling strength: \[\phi N_{seg} = 0.65 \times 27.33 = 17.77 \text{ kN} < \phi N_{sa} = 43.5 \text{ kN} \]

Step 5. Calculate allowable stress design (30% dead load, 70% live load)
\[\alpha = 1.2 \times 0.3 + 1.2 \times 0.7 = 1.48 \rightarrow T_{allowable,ASD} = 17.77 / 1.48 = 12.01 \text{ kN} \]

Section 5.3 / Section 9.2

FIGURE 5—EXAMPLE CALCULATION FOR TENSION CAPACITY (SI UNITS)
Given:
2 x FH II 12 S (M8)
Slab on grade = 5,076 psi
No supplementary reinforcement. => Condition B per ACI 318-14 17.3.3
or ACI 318-11 D.4.3 c)
Assume cracked concrete
\(h_a = 4.72 \) in.
\(h_d = 2.36 \) in.
\(s_a = 3.94 \) in.
\(c_{a1} = 3.15 \) in.
\(c_{a2} = 7.87 \) in.

Calculate the allowable static shear load for this configuration.

Calculation according to ACI 318-14 Chapter 17, ACI 318-11 Appendix D and this report

Step 1. Verify minimum spacing and edge distance according to Figure 4 – Tension

Step 2. Calculate steel strength of anchor in shear

\(V_{sg} = n V_{sa} = 14,838 \) lbf

Calculate steel capacity
\(\phi V_{sg} = 0.65 \times 14,832 = 9,645 \) lbf

Step 3. Calculate concrete breakout strength of anchor in shear

\(V_{cb} = \frac{A_{c}}{A_{c0}} \times \psi_{ec,V} \times \psi_{ed,V} \times \psi_{c,V} \times V_b \)

Step 3a. Check 3

\(1.5 c_{a1} = 3 \times 3.15 = 9.45 \) in. > \(s = 3.94 \) in. \(s_a \) controls

\(1.5 c_{a2} < c_{a2} \)

Step 3b. Calculate

\(V_{c0} = 4.5 \times c_{a1}^2 = 4.5 \times (3.15)^2 = 44.65 \) in.²

\(A_{v0} = (1.5 c_{a1}) \times (3 c_{a1} + s) = [1.5 \times 3.15] \times [3 \times (3.15) + 3.94] = 63.27 \) in.² < 2 \(A_{v0} \) –

Step 3c. Calculate

\(\psi_{ec,V} = \psi_{ed,V} = 1 \)

Step 3d. Calculate

\(V_0 = 7 \sqrt{c_{a1}} \times \sqrt{d_0} \times c_{a1}^{1.5} \times \left(\frac{d_0}{d_0} \right)^{0.2} = 7 \sqrt{5.076 \times 0.47} \times 3.15^{1.5} \times \left(\frac{0.94}{0.47} \right)^{0.2} = 2,196 \) lbf

Step 3e. Calculate modification factor for edge distance:

\(\psi_{ed,V} = 1 \)

Step 3f.

\(\psi_{c,V} = 1.0 \) (cracked concrete)

Step 3g. Calculate

\(V_{cb} = (63.27/44.65) \times 1 \times 2.196 = 3.112 \) lbf

Step 3h. Calculate

\(\phi V_{cb} = 3.112 \) lbf \times 0.7 = 2.178 lbf

Step 4. Calculate Pryout:

\(\phi V_{cb} = k_{cp} \times \phi V_{cb} \times N_{cb} = 1 \times 0.7 \times 6.264 = 4.385 \) lbf

\(N_{cb} \) According to Figure 4 – Tension (ca2 > 1.5 ha)

Step 5. Controlling strength:

\(\phi V_c = \min \phi V_{cb} \phi V_{cb} = 2.178 \) lbf (static)

\(\alpha = 1.2 \times 0.3 + 1.6 \times 0.7 = 1.48 -> V_{allowable,ASD} = 2.178 / 1.48 = 1.471 \) lbf

FIGURE 6—EXAMPLE CALCULATION FOR SHEAR CAPACITY (IMPERIAL UNITS)
Given:
2 x FH II 12 S (M8)
Slab on grade 35 Mpa
No supplementary reinforcement. =>
Condition B per ACI 318-14 17.3.3
or ACI 318-11 D.4.3 c)
Assume cracked concrete
hs = 120 mm
hf = 60 mm
sc = 100 mm
c = 80 mm
c = 200 mm.

Calculate the allowable static shear load for this configuration.

TABLE 3

Step 1. Verify minimum spacing and edge distance according to Figure 5 – Tension

Step 2. Calculate steel strength of anchor in shear $V_{s} = n \cdot V_{sa} = 66$ kN

Calculate steel capacity $\phi V_{s} = 0.65 \times 66 = 42.9$ kN

Step 3. Calculate concrete breakout strength of anchor in shear

Step 3a. Check 3 $c_{a1} = 3 \times 80 = 240$ mm $s = 100$ mm s controls

Step 3b. Calculate $A_{c1} = 4.5 \times c_{a1}^{2} = 4.5 \times (80)^{2} = 28,800$ mm3

Step 3c. Calculate $V_{c1} = A_{c1} \times \psi_{c1} \times \psi_{d} \times \psi_{c1} \times V_{b}$

Step 3d. Calculate $V_{b} = 0.6 \times \sqrt{\frac{c}{d}} \times \sqrt{\frac{c}{d}} \times c_{a1}^{1.5} \times \left(\frac{c}{d}\right)^{0.5} = 0.6 \times \sqrt{\frac{35}{12}} \times 80^{1.5} \times \left(\frac{24}{12}\right)^{0.2} = 10.11$ kN

Step 3e. Calculate modification factor for edge distance:

$\psi_{c2} = 200 \geq 1.5 \times c_{a1} = 120$

Step 3f. $\psi_{c2} = 1$ (cracked concrete)

Step 3g. Calculate $V_{cbg} = (40,800/28,800) \times 1 \times 1 \times 10.11 = 14.32$ kN

Step 3h. Calculate $\phi V_{cbg} = 14.32$ kN $x 0.7 = 10.02$ kN

Step 4. Calculate Pryout: $\phi V_{cpg} = k_{p} \times \phi \times N_{cbg} = 1 \times 0.7 \times 27.33 = 19.13$ kN

N_{cbg} According to Figure 5 – Tension (ca2 > 1.5 hv)

Step 5. Controlling strength: $\phi V_{p} = \min \{\phi V_{cpg} \phi V_{cbg} \phi V_{cpg} I = 10.02$ kN (static)

Step 6. Calculate allowable stress design (30% dead load, 70% live load)

$\alpha = 1.2 \times 0.3 + 1.6 \times 0.7 = 1.48 \rightarrow V_{allowable, ASD} = 10.02 / 1.48 = 6.77$ kN

FIGURE 7—EXAMPLE CALCULATION SHEAR CAPACITY (SI UNITS)