3.0 DESCRIPTION

3.1 Gas-Actuated Fasteners:

3.1.1 Materials: Simpson Strong-Tie® GDP and GDPS Gas-Actuated Fasteners are power-actuated fasteners (PAFs) manufactured from steel complying with ASTM A510, Grade 1060 or 10B60, and austempered to a Rockwell “C” core hardness of 53 to 56.

Simpson Strong-Tie® GDPM, GW, and GTH Gas-Actuated Fasteners are PAFs manufactured from steel complying with ASTM A510 Grades 1060 to 1065 or 10B60 to 10B65, austempered to a Rockwell “C” core hardness of 53 to 56.

See Table 1 for coating information.

3.1.2 Shank Type and Dimensions: The fasteners have straight or stepped smooth shanks. See Table 1 for shank type and fastener dimensions. Maximum point length is the maximum specified length from the tip of the fastener to the location where the diameter of the shank becomes constant. Minimum effective length is the minimum specified length from the underside of the fastener head to the tip of the fastener, except for fasteners with premounted washers, where the minimum effective shank length is the minimum specified length from the underside of the washer, in its installed condition, to the tip of the fastener.

3.2 Gas-Actuated Assemblies:

3.2.1 Rod Hanger Assemblies: The Simpson Strong-Tie® GRH Rod Hanger Assemblies consist of a GTH smooth shank fastener described in Section 3.1, with a premounted cold-formed steel bracket. The brackets for the GRH25 and GRH37 assemblies have an internally threaded hole which will accept, respectively, a 1/4-20 or 3/8-16 threaded steel rod. The brackets are formed from carbon steel complying with the report holder’s specifications. The brackets have a minimum base steel thickness of 0.063 inch (1.6 mm). See Table 1 for additional details.

3.2.2 Angle Clip Assemblies: The Simpson Strong-Tie® GAC Angle Clip Assemblies consist of a GTH smooth
shank fastener described in Section 3.1, with a premounted cold-formed steel 90-degree clip angle. The outstanding leg of the clip angle has a 0.315-inch-diameter (8.0 mm) hole for the attachment of ceiling wire. The clips are formed from carbon steel complying with the report holder's specifications. The clips have a minimum base steel thickness of 0.071 inch (1.8 mm). See Table 1 for additional details.

3.3 Substrate Materials:

3.3.1 Concrete: Normalweight and sand-lightweight concrete must comply with IBC Chapter 19 or IRC Section R402.2, as applicable. The minimum concrete compressive strength at the time of fastener installation must be as noted in Tables 2 and 3, as applicable.

3.3.2 Concrete Masonry Units (CMUs): CMUs must be minimum 8-inch-thick (203 mm) lightweight blocks complying with ASTM C90 for the GDP fastener. CMUs must be minimum 8-inch-thick (203 mm) mediumweight blocks complying with ASTM C90 for the GDPM, GW, and GTH fasteners.

3.3.3 Steel: Structural steel must comply with the minimum requirements of ASTM A36, ASTM A572 Grade 50 or ASTM A992, and have the minimum thicknesses as noted in Table 5.

3.3.4 Steel Deck: Steel deck panels must conform to ASTM A653 SS Grade 33 (minimum) with a minimum yield strength of 38,000 psi and a minimum tensile strength of 45,000 psi. Steel deck configurations must be as described in Table 3 and Figures 1A, 1B, 2A and 2B.

4.0 DESIGN AND INSTALLATION

4.1 Design:

4.1.1 General: Selection of fasteners must take into consideration the applicable base material and the length of the fastener. The minimum fastener length must be determined as follows:

- For installation into concrete, concrete-filled steel deck panels, concrete masonry units and steel base materials, the minimum effective Shank length shown in Table 1 must equal or exceed the sum of the thickness of the attached material and the minimum embedment depth (penetration) shown in the applicable tables in this report.
- For installation through steel base materials, the minimum effective Shank length shown in Table 1 must equal or exceed the sum of the following: the thickness of the attached material, the thickness of the base material and the required point penetration shown in the applicable tables in this report.

4.1.2 Allowable Loads: The applicable allowable load tables for Simpson Strong-Tie® Gas-Actuated Fasteners and assemblies driven into different base materials may be determined by referencing Table 1. The most critical applied loads, excluding seismic load effects, resulting from the load combinations in IBC Section 1605.3.1 or 1605.3.2 must not exceed the allowable loads. For fasteners which are subjected to seismic loads, see Section 4.1.5 for additional information. The stress increases and load reductions described in IBC Section 1605.3 are not allowed.

The allowable tension (pullout) loads, shear loads and oblique loads (applied at a 45-degree angle with respect to the fastener axis), listed in this report apply only to the connection of the fasteners to the base materials and to the connection of pre-mounted accessories to the fastener. Other limit states applicable to the design of a connection, such as fastener pull-through (pull-over) and lateral bearing on the attached material, which are governed by the properties of attached material, are outside the scope of this report. Design of the connection to the attached material must comply with the applicable requirements of the IBC. When designing the connection of wood members to the base material, the bending yield strength of the PAFs can be assumed to be the same as that of a nail with the same Shank diameter as the PAF.

4.1.3 Combined Loading: For fasteners subjected to both tension and shear loads, compliance with the following interaction equation must be verified:

\[
(p/P_a) + (v/V_a) \leq 1
\]

where:

- \(p \) = Actual applied tension load on fastener, lbf (N).
- \(P_a \) = Allowable tension load on fastener, lbf (N).
- \(v \) = Actual applied shear load on fastener, lbf (N).
- \(V_a \) = Allowable shear load on fastener, lbf (N).

4.1.4 Steel-to-steel Connections: When the Simpson Strong-Tie® fasteners listed in Table 5 are used in connections of two steel elements in accordance with Section J5 of AISI S100-16 (Section E5 of AISI S100-12), connection capacity must be determined in accordance with Sections 4.1.4.1 and 4.1.4.2, as applicable.

4.1.4.1 Connection Strength - Tension: To determine tensile connection strength in accordance with Section J5.2 of AISI S100-16 (Section E5.2 of AISI S100-12), the fastener tension strength, pull-out strength and pull-over strength must be known. These characteristics must be determined as follows:

- **PAF Tensile Strength:** The available tension strengths must be calculated in accordance with Section J5.2.1 of AISI S100-16 (Section E5.2.1 of AISI S100-12) using a value of 260,000 psi for \(F_{th} \).
- **Pull-out Strength:** See Table 5 for available pull-out strength.
- **Pull-over Strength:** The available pull-over strengths must be calculated in accordance with Section J5.2.3 of AISI S100-16 (Section E5.2.3 of AISI S100-12).

4.1.4.2 Connection Strength - Shear: To determine shear connection strength in accordance with Section J5.3 of AISI S100-16 (Section E5.3 of AISI S100-12), the fastener shear strength, bearing and tilting strength, pull-out strength in shear, net section rupture strength and shear strength limited by edge distance must be known. These characteristics must be determined as follows:

- **PAF Shear Strength:** The available shear strengths must be calculated in accordance with Section J5.3.1 of AISI S100-16 (Section E5.3.1 of AISI S100-12) using a value of 260,000 psi for \(F_{th} \).
- **Bearing and Tilting Strength:** The available bearing and tilting strengths must be calculated in accordance with Section J5.3.2 of AISI S100-16 (Section E5.3.2 of AISI S100-12).
- **Pull-out Strength in Shear:** The available pull-out strength in shear must be the applicable allowable shear strength from Table 5, or must be calculated in accordance with Section J5.3.3 of AISI S100-16 (Section E5.3.3 of AISI S100-12).
- **Net Section Rupture Strength and Shear Strength Limited by Edge Distance:** These limit states have not been considered in the determination of allowable loads in this report and must be addressed in the calculations.
submitted to the code official. The net section rupture strength must be determined in accordance with Section J5.3.4 of AISI S100-16 (Section E5.3.4 of AISI S100-12) and the shear strength limited by edge distance must be determined in accordance with Section J5.3.5 of AISI S100-16 (Section E5.3.5 of AISI S100-12).

4.1.5 Seismic Considerations: The Simpson Strong-Tie fasteners and assemblies are recognized for use when subjected to seismic loads as follows:

1. The fasteners and assemblies may be used for attachment of nonstructural components listed in Section 13.1.4 of ASCE 7, which are exempt from the requirements of ASCE 7.

2. Concrete base materials: The fasteners and assemblies installed in concrete may be used to support acoustical tile or lay-in panel suspended ceiling systems, distributed systems and distribution systems where the service load on any individual fastener or assembly does not exceed the lesser of 90 lbf (400 N) or the published allowable load in Tables 2A, 2B and 3, as applicable.

3. Steel base materials: The fasteners installed in steel may be used where the service load on any individual fastener or assembly does not exceed the lesser of 250 lbf (1112 N) or the published allowable load shown in Table 5.

4. For interior, nonstructural walls that are not subject to sustained tension loads and that are not a bracing application, the power-driven fasteners may be used to attach steel track to concrete or steel in all Seismic Design Categories. In Seismic Design Categories D, E, and F, the allowable shear load due to transverse pressure shall be no more than 90 pounds (400 N) when attaching to concrete; or 250 pounds (1,112 N) when attaching to steel. Substantiating calculations must be submitted addressing the fastener-to-base-material capacity and the fastener-to-attached-material capacity. Interior nonstructural walls are limited to locations where bearing walls, shear walls or braced walls are not required by the approved plans. The design load on the fastener must not exceed the allowable load established in this report for the concrete or steel base material.

4.2 Installation:
The fasteners and assemblies must be installed with a power fastening tool in accordance with Simpson Strong-Tie® recommendations. The fastening procedures must comply with the manufacturer’s published installation instructions. These instructions must be available on the jobsite at all times during fastener installation.

The fasteners size, minimum embedment or penetration, minimum spacing and edge distances must comply with Tables 2 through 5, as applicable. For fasteners installed into concrete, the fasteners must not be installed into concrete until the concrete has reached the designated compressive strength.

5.0 CONDITIONS OF USE

The Simpson Strong-Tie® Gas-Actuated Fasteners and Assemblies described in this report comply with, or are suitable alternatives to what is specified in, those codes listed in Section 1.0 of this report, subject to the following conditions:

5.1 The fasteners and assemblies must be manufactured and identified in accordance with this report.

5.2 Fastener installation complies with this report and the Simpson Strong-Tie® published installation instructions. In the event of conflict between this report and the Simpson Strong-Tie® published installation instructions, the more restrictive requirements govern.

5.3 Calculations demonstrating that the applied loads are less than the allowable loads described in this report must be submitted to the code official for approval. The calculations must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.

5.4 For steel-to-steel connections that meet the applicability requirements of Section J5 of AISI S100-16 (Section E5 of AISI S100-12), calculations demonstrating that the available connection strength has been determined in accordance with Section J5 of AISI S100-16 (Section E5 of AISI S100-12) and Section 4.1.4 of this report, and equals or exceeds the applied load, must be submitted to the code official. The calculations must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.

5.5 The minimum concrete thickness must be three times the fastener penetration depth. Face shell thickness of CMUs must be a minimum of 11/4 inches (32 mm).

5.6 Refer to Section 4.1.5 for seismic considerations.

5.7 The use of fasteners in concrete or masonry is limited to installation in uncracked concrete or masonry. Cracking occurs when $f > f_r$ due to service loads or deformations.

5.8 Use of fasteners is limited to dry, interior locations, which include exterior walls which are protected by an exterior wall envelope.

5.9 Use of fasteners in contact with preservative-treated or fire-retardant-treated wood is not permitted.

5.10 The Simpson Strong-Tie products addressed in this report are manufactured under a quality control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED

Data in accordance with the ICC-ES Acceptance Criteria for Power-Actuated Fasteners Driven into Concrete, Steel and Masonry Elements (AC70), dated February 2016 (editorially revised November 2017).

7.0 IDENTIFICATION

7.1 Containers of fasteners and assemblies are identified with the report holder’s name (Simpson Strong-Tie®), the product name, the fastener catalog number, the length, the quantity, the manufacturing date and the evaluation report number (ESR-2811). In addition, each fastener is identified by ≠ (the “no equal” sign) stamped on the fastener head.

7.2 The report holder’s contact information is the following:

SIMPSON STRONG-TIE COMPANY INC.

5956 WEST LAS POSITAS BOULEVARD

PLEASANTON, CALIFORNIA 94588

(800) 999-5099

www.strongtie.com
TABLE 1—SIMPSON STRONG-TIE® GAS-ACTUATED FASTENERS AND ASSEMBLIES

FASTENERS (see Figures 5 and 6)

<table>
<thead>
<tr>
<th>FASTENER MODEL NUMBER</th>
<th>SHANK TYPE</th>
<th>SHANK DIAMETER (inch)</th>
<th>NOMINAL HEAD DIAMETER (inch)</th>
<th>MAXIMUM POINT LENGTH (inch)</th>
<th>MINIMUM EFFECTIVE SHANK LENGTH (inch)</th>
<th>FASTENER GALVANIZATION</th>
<th>APPLICABLE BASE MATERIAL</th>
<th>APPLICATION TABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP-XX(X)³</td>
<td>Smooth, straight</td>
<td>0.106</td>
<td>0.240</td>
<td>0.22</td>
<td>XX(X)/100 - 0.02</td>
<td>ASTM B695, CLASS 5, TYPE I</td>
<td>Conc.-filled deck</td>
<td>Masonry, Steel</td>
</tr>
<tr>
<td>GDPS-XX(X)³</td>
<td>Smooth, stepped</td>
<td>0.118/0.102</td>
<td>0.240</td>
<td>0.22</td>
<td>XX(X)/100 - 0.02</td>
<td>ASTM B633, SC1, TYPE 1</td>
<td>Steel</td>
<td>5</td>
</tr>
<tr>
<td>GDPM-75</td>
<td>Smooth, straight</td>
<td>0.126</td>
<td>0.252</td>
<td>0.25</td>
<td>0.73</td>
<td>ASTM B695, CLASS 5, TYPE I</td>
<td>Concrete</td>
<td>Conc.-filled deck</td>
</tr>
<tr>
<td>GDPM-100</td>
<td>Smooth, straight</td>
<td>0.126</td>
<td>0.252</td>
<td>0.21</td>
<td>0.48</td>
<td>ASTM B695, CLASS 5, TYPE I</td>
<td>Steel</td>
<td>5</td>
</tr>
<tr>
<td>GDPM-50</td>
<td>Smooth, stepped</td>
<td>0.128/0.110</td>
<td>0.252</td>
<td>0.21</td>
<td>0.48</td>
<td>ASTM B633, SC1, TYPE 1</td>
<td>Steel</td>
<td>5</td>
</tr>
</tbody>
</table>

FASTENERS WITH PREMOUNTED WASHERS (see Figures 7 and 8)

<table>
<thead>
<tr>
<th>ASSEMBLY MODEL NUMBER</th>
<th>SHANK TYPE</th>
<th>SHANK DIAMETER (inch)</th>
<th>NOMINAL HEAD DIAMETER (inch)</th>
<th>MAXIMUM POINT LENGTH (inch)</th>
<th>MINIMUM EFFECTIVE SHANK LENGTH (inch)</th>
<th>WASHER DESCRIPTION</th>
<th>WASHER MATERIAL & GALVANIZATION</th>
<th>APPLICABLE BASE MATERIAL</th>
<th>APPLICATION TABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW-75</td>
<td>Smooth, straight</td>
<td>0.126</td>
<td>0.283</td>
<td>0.25</td>
<td>0.654</td>
<td>5/16-inch diameter, dimpled</td>
<td>Carbon steel</td>
<td>ASTM B633, SC1, TYPE 1</td>
<td>Concrete</td>
</tr>
<tr>
<td>GW-100</td>
<td>Smooth, straight</td>
<td>0.126</td>
<td>0.283</td>
<td>0.25</td>
<td>0.654</td>
<td>5/16-inch diameter, dimpled</td>
<td>Carbon steel</td>
<td>ASTM B633, SC1, TYPE 1</td>
<td>Concrete</td>
</tr>
<tr>
<td>GW-50</td>
<td>Smooth, stepped</td>
<td>0.128/0.110</td>
<td>0.283</td>
<td>0.21</td>
<td>0.425</td>
<td>5/16-inch diameter, dimpled</td>
<td>Carbon steel</td>
<td>ASTM B633, SC1, TYPE 1</td>
<td>Steel</td>
</tr>
<tr>
<td>GTH¹</td>
<td>Smooth, straight</td>
<td>0.126</td>
<td>0.283</td>
<td>0.25</td>
<td>0.959</td>
<td>Tophat</td>
<td>Aluminum</td>
<td>2B, 3</td>
<td></td>
</tr>
</tbody>
</table>

THREADED ROD HANGER ASSEMBLIES (see Figure 9)

<table>
<thead>
<tr>
<th>ASSEMBLY MODEL NUMBER</th>
<th>FASTENER W/WASHER</th>
<th>CLIP DESCRIPTION</th>
<th>CLIP MATERIAL & GALVANIZATION</th>
<th>APPLICABLE BASE MATERIAL</th>
<th>APPLICATION TABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRH25</td>
<td>GTH</td>
<td>0.063 inch thick with (\frac{1}{4})-20 threaded eyelet</td>
<td>Carbon steel</td>
<td>ASTM B633, SC1, TYPE 1</td>
<td>2B, 3</td>
</tr>
<tr>
<td>GRH37</td>
<td>GTH</td>
<td>0.063 inch thick with (\frac{3}{8})-16 threaded eyelet</td>
<td>Carbon steel</td>
<td>ASTM B633, SC1, TYPE 1</td>
<td>2B, 3</td>
</tr>
</tbody>
</table>

CEILING CLIP ASSEMBLIES (see Figure 10)

<table>
<thead>
<tr>
<th>ASSEMBLY MODEL NUMBER</th>
<th>FASTENER W/WASHER</th>
<th>CLIP DESCRIPTION</th>
<th>CLIP MATERIAL & GALVANIZATION</th>
<th>APPLICABLE BASE MATERIAL</th>
<th>APPLICATION TABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAC</td>
<td>GTH</td>
<td>0.071 inch thick, 90° clip angle</td>
<td>Carbon steel</td>
<td>ASTM B633, SC1, TYPE 1</td>
<td>2B, 3</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

¹The tophat is manufactured from aluminum complying with the manufacturer’s specifications in the approved quality documentation.

²For step shank fasteners: (Diameter of shank above the step)/(Diameter of shank below the step).

³The XX(X) designation in the model number represents the length of the fastener expressed in inches multiplied by 100.

⁴When multiple lengths of a fastener are addressed, the minimum effective shank length is expressed in terms of the designated length, XX(X), in inches.
TABLE 2A—ALLOWABLE LOADS FOR SIMPSON STRONG-TIE® GAS-ACTUATED FASTENERS DRIVEN INTO NORMALWEIGHT CONCRETE1,3\[
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
\text{FASTENER MODEL NUMBER} & \text{SHANK DIAMETER (inch)} & \text{MINIMUM EMBEDMENT DEPTH (inch)} & \text{MINIMUM SPACING (inches)} & \text{MINIMUM EDGE DISTANCE (inches)} & \text{ALLOWABLE LOADS (lbf)} \\
\hline
\text{Concrete Compressive Strength:} & \text{Tension} & \text{Shear} & \text{Tension} & \text{Shear} & \text{Tension} & \text{Shear} & \text{Tension} & \text{Shear} \\
\hline
\text{GDP-XX(X)} & 0.106 & \frac{5}{8} & 4 & 3 & 25 & 25 & 30 & 25 & 45 & 25 & 45 & 25 \\
GDP-75 & 0.106 & \frac{3}{4} & 4 & 3 & 30 & 50 & 30 & 55 & 30 & 75 & 30 & 75 \\
GDPM-75 & 0.126 & \frac{5}{8} & 4 & 3 & 65 & 60 & 70 & 65 & 95 & 95 & - & - \\
GDPM-100 & 0.126 & \frac{3}{4} & 4 & 3 & 95 & 135 & 105 & 145 & 190 & 215 & - & - \\
GW-75 & & & & & & & & & & & & \\
GW-100 & & & & & & & & & & & & \\
GTH & & & & & & & & & & & & \\
\hline
\end{array}
\]

TABLE 2B—ALLOWABLE LOADS FOR SIMPSON STRONG-TIE® GAS-ACTUATED ASSEMBLIES DRIVEN INTO NORMALWEIGHT CONCRETE1,2,3\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
\text{ASSEMBLY MODEL NUMBER} & \text{SHANK DIAMETER (inch)} & \text{MINIMUM EMBEDMENT DEPTH (inch)} & \text{MINIMUM SPACING (inches)} & \text{MINIMUM EDGE DISTANCE (inches)} & \text{ALLOWABLE LOADS (lbf)} \\
\hline
\text{Concrete Compressive Strength:} & \text{Tension} & \text{Oblique} & \text{Tension} & \text{Oblique} & \text{Tension} & \text{Oblique} & \text{Tension} & \text{Oblique} \\
\hline
\text{GRH25} & 0.126 & \frac{3}{4} & 4 & 3 & 85 & - & 115 & - & 160 & - & 165 & - \\
GRH37 & & & & & & & & & & & & \\
GAC & 0.126 & \frac{3}{4} & 4 & 3 & 105 & 130 & 120 & 135 & 145 & 170 & 155 & 195 & 175 \\
\hline
\end{array}
\]

For SI: 1 inch = 25.4 mm, 1 psi = 6.89 kPa, 1 lbf = 4.45 N.
1The fasteners must not be driven until the concrete has reached the designated minimum compressive strength, or the minimum compressive strength specified in the applicable code, whichever is greater.
2Oblique load direction is 45° from the concrete member surface.
3The fasteners and assemblies listed in the tables above may be used for static load conditions and for the seismic load conditions described in Section 4.1.5, as applicable. The tabulated allowable loads apply to static load conditions. For seismic load conditions, the allowable loads must be limited in accordance with Section 4.1.5, Items 2 and 4, as applicable.

TABLE 3—ALLOWABLE LOADS FOR SIMPSON STRONG-TIE® GAS-ACTUATED FASTENERS AND ASSEMBLIES DRIVEN INTO SAND-LIGHTWEIGHT CONCRETE AND SAND-LIGHTWEIGHT CONCRETE FILLED STEEL DECK1,7,8\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\text{FASTENER MODEL NUMBER} & \text{SHANK DIAMETER (inch)} & \text{MINIMUM EMBEDMENT DEPTH (inch)} & \text{MINIMUM SPACING (inches)} & \text{MINIMUM EDGE DISTANCE (inches)} & \text{ALLOWABLE LOADS (lbf)} \\
\hline
\text{Fastener Location:} & \text{Fasteners Installed Directly into Concrete5} & \text{Fasteners Installed through Lower Flute of Steel Deck into Concrete5,6} & \text{Fasteners Installed through Lower Flute of Steel Deck into Concrete5,6} \\
\text{Load Direction:} & \text{Tension} & \text{Shear} & \text{Tension} & \text{Shear} & \text{Oblique} & \text{Tension} & \text{Shear} & \text{Oblique} \\
\hline
\text{GDP-XX(X)} & 0.106 & \frac{5}{8} & 4 & 3 & 75 & 35 & 65 & 195 & - & 60 & 180 & - \\
GDP-75 & 0.106 & \frac{3}{4} & 4 & 3 & 105 & 140 & 130 & 270 & - & 60 & 180 & - \\
GDPM-75 & 0.126 & \frac{5}{8} & 4 & 3 & 60 & 110 & - & - & - & 35 & 215 & - \\
GDPM-100 & 0.126 & \frac{3}{4} & 4 & 3 & 115 & 130 & - & - & - & 55 & 235 & - \\
GW-75 & & & & & & & & & & & & \\
GW-100 & & & & & & & & & & & & \\
GTH & & & & & & & & & & & & \\
GRH25 & 0.126 & \frac{3}{4} & 4 & - & - & - & 95 & - & - & 95 & - & - \\
GRH37 & & & & & & & & & & & & \\
GAC & 0.126 & \frac{3}{4} & 4 & - & - & - & 90 & - & - & 105 & - & 120 \\
\hline
\end{array}
\]

For SI: 1 inch = 25.4 mm, 1 psi = 6.89 kPa, 1 lbf = 4.45 N.
1 The fasteners must not be driven until the concrete has reached a minimum compressive strength of 3,000 psi.
2 For fasteners installed in concrete (not through metal deck), the fastener must be installed with a minimum edge distance of 3 inches from the edge of the concrete.
3 For fasteners installed through metal deck, the fastener must be installed through the lower flutes of the deck with minimum edge distances as shown in Figures 1A, 1B, 2A, and 2B, and a minimum of 3 inches from the end of the deck.
4 The allowable load values are applicable to fasteners installed through the underside of a steel deck at the ribs and into sand-lightweight concrete with a minimum compressive strength, f_c, of 3,000 psi. The steel deck must have a minimum base-metal thickness of 20 gage (0.0359 inch).
5 Oblique load direction is 45° from the concrete member surface.
6 See Figures 1A and 1B for installation parameters for the GDP fasteners. See Figure 2A for installation parameters for the GRH and GAC assemblies.
7 See Figure 2B for installation parameters for the GDP fasteners and the GRH and GAC assemblies. See Figure 2B for installation parameters for GDPM, GW, and GTH fasteners.
8 The fasteners and assemblies listed in the table above may be used for static load conditions and for the seismic load conditions described in Section 4.1.5, Items 2 and 4, as applicable. The tabulated allowable loads apply to static load conditions. For seismic load conditions, the allowable loads must be limited in accordance with Section 4.1.5, Items 3 and 4, as applicable. The tabulated allowable load values are for fasteners installed in the center of a hollow CMU face shell. See Figure 4 for a depiction of the recognized placement zone. Only one PAF may be installed at each cell. Allowable loads for fasteners installed in mortar head and bed joints, or into the web of the CMU, are outside the scope of this report.
9 The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Item 1 of Section 4.1.5.

TABLE 4—ALLOWABLE LOADS FOR SIMPSON STRONG-TIE® GAS-ACTUATED FASTENERS DRIVEN INTO THE FACE SHELL OF HOLLOW CONCRETE MASONRY UNITS (CMUs)1,3,4

<table>
<thead>
<tr>
<th>FASTENER MODEL NUMBER</th>
<th>SHANK DIAMETER (inch)</th>
<th>MINIMUM EMBEDMENT DEPTH1,2 (inch)</th>
<th>MINIMUM SPACING (inches)</th>
<th>MINIMUM EDGE DISTANCE2 (inches)</th>
<th>ALLOCABLE LOADS (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Direction:</td>
<td>Tension</td>
<td>Shear</td>
<td>Tension</td>
<td>Shear</td>
<td>Tension</td>
</tr>
<tr>
<td>GDP-XX(X)</td>
<td>0.106</td>
<td>5/16</td>
<td>8</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>GDPM-75</td>
<td>0.106</td>
<td>5/16</td>
<td>8</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>GDPM-100</td>
<td>0.126</td>
<td>5/16</td>
<td>8</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>GW-75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 psi = 6.89 kPa, 1 lbf = 4.45 N.

1 The tabulated allowable load values are for fasteners installed in a hollow CMU conforming to ASTM C90. The minimum allowable nominal size of the CMU must be 8 inches high by 8 inches wide by 16 inches long, with a minimum, 1 1/4-inch-thick face shell thickness. See Section 3.3.2 for additional information.
2 Distance from center of PAF to edge of individual blocks.
3 The tabulated allowable load values are for fasteners installed in the center of a hollow CMU face shell. See Figure 4 for a depiction of the recognized placement zone. Only one PAF may be installed at each cell. Allowable loads for fasteners installed in mortar head and bed joints, or into the web of the CMU, are outside the scope of this report.
4 The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Item 1 of Section 4.1.5.

TABLE 5—ALLOWABLE LOADS FOR SIMPSON STRONG-TIE® GAS-ACTUATED FASTENERS DRIVEN INTO STEEL1,2

<table>
<thead>
<tr>
<th>FASTENER MODEL NUMBER</th>
<th>SHANK DIAMETER (inch)</th>
<th>MINIMUM SPACING (inch)</th>
<th>MINIMUM EDGE DISTANCE1,2 (inch)</th>
<th>MINIMUM STEEL STRENGTH</th>
<th>ALLOWABLE LOADS (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Direction:</td>
<td>Tension</td>
<td>Shear</td>
<td>Tension</td>
<td>Shear</td>
<td>Tension</td>
</tr>
<tr>
<td>GDP-XX(X)</td>
<td>0.106</td>
<td>1</td>
<td>1/2</td>
<td>ASTM A36</td>
<td>125°</td>
</tr>
<tr>
<td>GDP-XX(X)</td>
<td>0.106</td>
<td>1</td>
<td>1/2</td>
<td>ASTM A572, Grade 50 or ASTM A992</td>
<td>—</td>
</tr>
<tr>
<td>GDPS-XX(X)</td>
<td>0.118/0.102</td>
<td>1</td>
<td>1/2</td>
<td>ASTM A36</td>
<td>—</td>
</tr>
<tr>
<td>GDPS-XX(X)</td>
<td>0.118/0.102</td>
<td>1</td>
<td>1/2</td>
<td>ASTM A572, Grade 50 or ASTM A992</td>
<td>—</td>
</tr>
<tr>
<td>GDPM-50</td>
<td>0.128/0.110</td>
<td>1</td>
<td>1/2</td>
<td>ASTM A36</td>
<td>—</td>
</tr>
<tr>
<td>GW-50</td>
<td>0.128/0.110</td>
<td>1</td>
<td>1/2</td>
<td>ASTM A572, Grade 50 or ASTM A992</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 psi = 6.89 kPa, 1 lbf = 4.45 N, 1 ksi = 6.895 MPa.

1 The entire pointed portion of the fastener must penetrate the steel to obtain the tabulated values (see Figure 3), unless otherwise noted.
2 The fasteners listed in the table above may be used for static load conditions and for the seismic load conditions described in Section 4.1.5, Items 3 and 4, as applicable.
3 For stepped shank fasteners: (Diameter of shank above the step)/(Diameter of shank below the step).
4 Tabulated values are based on minimum penetration of the fastener point into the steel of 0.35 inch (8.9 mm).
5 Tabulated values are based on minimum penetration of the fastener point into the steel of 0.25 inch (6.4 mm).
6 For steel-to-steel connections designed in accordance with Section 4.1.4, the tabulated allowable load may be increased by a factor of 1.25, and the design strength may be taken as the tabulated allowable load multiplied by a factor of 2.0.
FIGURE 1A—GDP GAS-ACTUATED FASTENER AND GRH AND GAC ASSEMBLIES INSTALLED INTO CONCRETE FILLED 1\(\frac{1}{2}\)-INCH-DEEP COMPOSITE FLOOR “B” DECK

FIGURE 1B—GDP GAS-ACTUATED FASTENER INSTALLED INTO CONCRETE FILLED INVERTED 1\(\frac{1}{2}\)-INCH-DEEP COMPOSITE FLOOR “B” DECK

FIGURE 2A—GDP GAS-ACTUATED FASTENER AND GRH AND GAC ASSEMBLIES INSTALLED IN CONCRETE FILLED 3-INCH-DEEP COMPOSITE FLOOR “W” DECK

FIGURE 2B—GDPM, GW & GTH GAS-ACTUATED FASTENER INSTALLED IN CONCRETE FILLED 3-INCH-DEEP COMPOSITE FLOOR “W” DECK
FIGURE 3—FASTENER PENETRATION THROUGH STEEL WHERE REQUIRED

FIGURE 4—ZONE FOR FASTENER INSTALLATION IN FACE SHELL OF CMU

FIGURE 5—COLLATED GDP GAS-ACTUATED SMOOTH SHANK FASTENER

FIGURE 6—COLLATED GDPS GAS-ACTUATED STEP SHANK FASTENER

FIGURE 7—GW GAS-ACTUATED SMOOTH OR STEP SHANK FASTENER

FIGURE 8—GTH GAS-ACTUATED SMOOTH SHANK FASTENER

FIGURE 9—GRH ROD HANGER ASSEMBLY

FIGURE 10—GAC ANGLE CLIP ASSEMBLY
1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that the Simpson Strong-Tie® Gas-Actuated Fasteners, described in ICC-ES evaluation report ESR-2811, have also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:

- 2020 City of Los Angeles Building Code (LABC)
- 2020 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The Simpson Strong-Tie® Gas-Actuated Fasteners, described in Sections 2.0 through 7.0 of the evaluation report ESR-2811, comply with LABC Chapters 19, 21, 22, and the LARC, and are subjected to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The Simpson Strong-Tie® Gas-Actuated Fasteners described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report ESR-2811.
- The design, installation, conditions of use and identification of the fasteners are in accordance with the 2018 International Building Code® (2018 IBC) provisions noted in the evaluation report ESR-2811.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- The allowable values listed in the attached report and tables are for the fasteners only. Connected members shall be checked for their capacity (which may govern).
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.

This supplement expires concurrently with the evaluation report, reissued February 2020 and revised July 2020.
DIVISION: 03 00 00—CONCRETE
Section: 03 16 00—Concrete Anchors

DIVISION: 04 00 00—MASONRY
Section: 04 05 19.16—Masonry Anchors

DIVISION: 05 00 00—METALS
Section: 05 05 23—Metal Fastenings

REPORT HOLDER:

SIMPSON STRONG-TIE COMPANY INC.

EVALUATION SUBJECT:

SIMPSON STRONG-TIE GAS-ACTUATED FASTENERS AND ASSEMBLIES

1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that the Simpson Strong-Tie Gas-Actuated Fasteners and Assemblies, described in ICC-ES evaluation report ESR-2811, have also been evaluated for compliance with the codes noted below.

Applicable code editions:
- 2020 and 2017 Florida Building Code—Building
- 2020 and 2017 Florida Building Code—Residential

2.0 CONCLUSIONS

The Simpson Strong-Tie Gas-Actuated Fasteners and Assemblies, described in Sections 2.0 through 7.0 of ICC-ES evaluation report ESR-2811, comply with the Florida Building Code—Building and Florida Building Code—Residential, provided the design is in accordance with the Florida Building Code—Building or the Florida Building Code—Residential, as applicable. The installation requirements noted in ICC-ES evaluation report ESR-2811 for the 2018 and 2015 International Building Code® meet the requirements of the Florida Building Code—Building or Florida Building Code—Residential, as applicable.

Use of the Simpson Strong-Tie Gas-Actuated Fasteners and Assemblies has also been found to be in compliance with the High Velocity Hurricane Zone provisions of the Florida Building Code—Building and the Florida Building Code—Residential, with the following conditions:

a) Simpson Strong-Tie Gas-Actuated Fasteners and Assemblies must not be used in wood blocking attachment, in accordance with the Florida Building Code—Building Section 2330.1.10.

b) For connections subject to uplift, the connection must be designed for no less than 700 pounds (3114 N).

For products falling under Florida Rule 61G20-3, verification that the report holder’s quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued February 2020 and revised July 2020.