1.0 EVALUATION SCOPE

Compliance with the following codes:

For evaluation for compliance with codes adopted by the Los Angeles Department of Building and Safety (LADBS), see ESR-3068 LABC and LARC Supplement.

Property evaluated:

Structural

2.0 USES

The Ultracon+ screw anchors are used to resist static and wind tension and shear loads in uncracked normal-weight concrete having a specified compressive strength, f'_{c}, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

The anchoring system is an alternative to anchors described in Section 1901.3 of the 2018 and 2015 IBC, Sections 1908 and 1909 of the 2012 IBC, and Sections 1911 and 1912 of the 2009 IBC. The anchors may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

3.0 DESCRIPTION

3.1 Ultracon+ Screw Anchors:

Ultracon+ screw anchors are comprised of a one-piece threaded anchor body with either a hex head, slotted hex head, phillips flat head or trim flat head.

Product names for the report holder and the additional listees are presented in the following table of this report.

<table>
<thead>
<tr>
<th>COMPANY NAME</th>
<th>PRODUCT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEWALT</td>
<td>Ultracon®+</td>
</tr>
<tr>
<td>All Points Screw, Bolt & Specialty</td>
<td>AP Tapper+</td>
</tr>
<tr>
<td>The Hillman Group</td>
<td>Hillman Tapper+</td>
</tr>
</tbody>
</table>

Available nominal sizes are $\frac{3}{16}$ inch and $\frac{1}{4}$ inch (4.8 mm and 6.4 mm). The anchors are manufactured from low-carbon steel that is case hardened and have a Stalgard® (Perma-Seal® for Tapper+) coating available in various colors. The Ultracon+ screw anchor is illustrated in Figure 2 of this report.

The anchor body is formed with alternating high-low threads and a gimlet point tip. The anchors are installed in a predrilled hole with a powered tool during which the threads on the anchor body tap into the sides of the predrilled hole and interlock with the base material during installation.

3.2 Concrete:

Normal-weight and lightweight concrete must comply with Sections 1903 and 1905 of the IBC.

4.0 DESIGN AND INSTALLATION

4.1 Strength Design:

4.1.1 General:

Design strength of anchors complying with the 2018 and 2015 IBC, as well as Section R301.1.3 of the 2018 and 2015 IRC, must be determined in accordance with ACI 318-14 Chapter 17 and this report.

Design strength of anchors complying with the 2012 IBC, as well as Section R301.1.3 of the 2012 IRC, must be determined in accordance with ACI 318-11 Appendix D and this report.

Design strength of anchors complying with the 2009 IBC, as well as Section R301.1.3 of the 2009 IRC, must be determined in accordance with ACI 318-08 Appendix D, and this report.

Design parameters are based on the 2018 and 2015 IBC (ACI 318-14) and 2012 IBC (ACI 318-11) unless noted otherwise in Sections 4.1.1 through 4.1.11 of this report.

The strength design of anchors must comply with ACI 318-14 17.2.3.1 or ACI 318-11 D.4.1, as applicable, except as required in ACI 318-14 17.2.3 or ACI 318-11 D.3.3, as applicable.
Strength reduction factors, \(\phi \), as given in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, and noted in Tables 3 and 4, must be used for load combinations calculated in accordance with Section 1605.2 of the IBC, Section 5.3 of ACI 318-14 or Section 9.2 of ACI 318-11. Strength reduction factors, \(\phi \), as given in ACI 318-11 D.4.4, must be used for load combinations calculated in accordance with ACI 318-11 Appendix C.

The value of \(f'_c \) is limited to 8,000 psi (55.2 MPa), maximum, in accordance with ACI 318-14 17.2.7 or ACI 318-11 Section D.3.7, as applicable.

4.1.2 Requirements for Static Steel Strength in Tension, \(N_{sa} \)

The nominal static steel strength of a single anchor in tension, \(N_{sa} \), calculated in accordance with ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable, using the values of \(\ell \), as given in Table 4 and the value of \(N_{o} \) or \(N_{o,b} \) as calculated in Section 4.1.3 of this report.

4.1.3 Requirements for Static Concrete Breakout Strength in Tension, \(N_{cb} \) or \(N_{cab} \)

The nominal concrete breakout strength of a single anchor or a group of anchors in tension, \(N_{cb} \) or \(N_{cab} \), respectively, must be calculated in accordance with ACI 318-14 17.4.2 or ACI 318-11 D.5.2.2, as applicable, with modifications as described in this section. The basic concrete breakout strength of a single anchor in tension, \(N_{cb} \), must be calculated according to ACI 318-14 17.4.2.2 or ACI 318-11 D.5.2.2, as applicable, using the values of \(h_{ef} \) and \(k_{uncr} \) as given in Table 3 of this report, in lieu of \(h_{ef} \) and \(k_{c} \), respectively. The value of \(\psi_{c,p} = 1.0 \).

4.1.4 Requirements for Static Pullout Strength in Tension, \(N_{pan} \)

The nominal pullout strength of a single anchor in accordance with ACI 318-14 17.4.3.1 and 17.4.3.2 or ACI 318-11 D.5.3.1 and D.5.3.2, respectively, as applicable, in uncracked concrete, \(N_{pan,uncr} \), is given in Table 3 of this report. In lieu of ACI 318-14 17.4.3.6 or ACI 318-11 D.5.3.6, as applicable, \(\psi_{c,p} = 1.0 \) for all design cases. The nominal pullout strength can be adjusted by calculation according to Eq-1:

\[
N_{pan,cr} = N_{pan,uncr} \left(\frac{f'_c}{f'_{cu}} \right)^{2/5} \text{ (lb, psi)}
\]

\[
N_{pan,cr} = N_{pan,uncr} \left(\frac{1}{172} \right)^n \text{ (N, MPa)}
\]

where \(f'_c \) is the specified concrete compressive strength and whereby the exponent \(n \) is 0.3 for \(\frac{1}{6} \)-inch-diameter (4.8 mm) anchors and \(n = 0.4 \) for \(\frac{1}{4} \)-inch-diameter (6.4 mm) anchors.

4.1.5 Requirements for Static Steel Shear Strength, \(V_{ss} \)

The nominal steel shear strength, \(V_{ss} \), of a single anchor in accordance with ACI 318-14 17.5.1.2 or ACI 318-11 D.6.1.2, as applicable, is given in Table 4 of this report, and must be used in lieu of the values derived by calculation from ACI 318-14 Eq. 17.5.1.2b or ACI 318-11 Eq. D-29, as applicable.

4.1.6 Requirements for Static Concrete Breakout Strength in Shear, \(V_{cb} \) or \(V_{cab} \)

The nominal concrete breakout strength of a single anchor or group of anchors in shear, \(V_{cb} \) or \(V_{cab} \), respectively, must be calculated in accordance with ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable, with modifications as described in this section. The basic concrete breakout strength of a single anchor in shear, \(V_{cb} \), must be calculated in accordance with ACI 318-14 17.5.2.2 or ACI 318-11 D.6.2.2, as applicable, using the value of \(f'_c \) and \(d_0 \) (\(d_0 \)) given in Table 4 of this report.

4.1.7 Requirements for Static Concrete Pryout Strength in Shear, \(V_{cp} \) or \(V_{cpg} \)

The nominal concrete pryout strength of a single anchor or group of anchors, \(V_{cp} \) or \(V_{cpg} \), respectively, must be calculated in accordance with ACI 318-14 17.5.3 or ACI 318-11 D.6.3, as applicable, modified by using the value of \(k_{p} \) provided in Table 4 and the value of \(N_{o,b} \) or \(N_{o,bg} \) as calculated in Section 4.1.3 of this report.

4.1.8 Requirements for Interaction of Tensile and Shear Forces

For loadings that include combined tension and shear, the design must be performed in accordance with ACI 318-14 17.6 or ACI 318-11 Section D.7, as applicable.

4.1.9 Requirements for Critical Edge Distance, \(c_{ac} \)

In applications where \(c < c_{ac} \) and supplemental reinforcement to control splitting of the concrete is not present, the concrete breakout strength in tension for uncracked concrete, calculated according to ACI 318-14 17.4.2 or ACI 318-11 D.5.2, as applicable, must be further multiplied by the factor \(\psi_{c,p,N} \) given by Eq-2:

\[
\psi_{c,p,N} = \frac{c}{c_{ac}}
\]

whereby the factor \(\psi_{c,p,N} \) need not be taken less than \(1.5 \frac{h_{ef}}{c_{ac}} \).

For all other cases, \(\psi_{c,p,N} = 1.0 \). In lieu of using ACI 318-14 17.7.6 or ACI 318-11 D.8.6, as applicable, values of \(c_{ac} \) provided in Table 3 of this report must be used.

4.1.10 Requirements for Minimum Member Thickness, Minimum Anchor Spacing and Minimum Edge Distance

In lieu of ACI 318-14 17.7.1 and 17.7.3 or ACI 318-11 D.8.1 and D.8.3, respectively, as applicable, values of \(s_{min} \) and \(h_{min} \) must comply with Table 1 of this report. In lieu of ACI 318-14 17.7.5 or ACI 318-11 D.8.5, as applicable, minimum member thicknesses, \(h_{min} \), must comply with Table 1 of this report.

4.1.11 Lightweight Concrete

For the use of anchors in lightweight concrete, the modification factor \(\lambda_{a} \) equal to 0.8 is applied to all values of \(\sqrt{f'_c} \) affecting \(N_{e} \) and \(V_{n} \).

For ACI 318-14 (2018 and 2015 IBC), ACI 318-11 (2012 IBC) and ACI 318-08 (2009 IBC), \(\lambda_{a} \) shall be determined in accordance with the corresponding version of ACI 318.

4.2 Allowable Stress Design (ASD):

4.2.1 General

Design values for use with allowable stress design (working stress design) load combinations in accordance with Section 1605.3 of the IBC are required. These are calculated using Eq-3 and Eq-4 as follows:

\[
T_{allowable,ASD} = \frac{\phi N_{t}}{\alpha}
\]

\[
V_{allowable,ASD} = \frac{\phi V_{n}}{\alpha}
\]

where:

\[
T_{allowable,ASD} = \text{Allowable tension load (lbf or kN)}
\]

\[
V_{allowable,ASD} = \text{Allowable shear load (lbf or kN)}
\]

\[
\phi N_{t} = \text{Lowest design strength of an anchor or anchor group in tension as determined in accordance with ACI 318-14 and ACI 318-11 Chapter 17 as}
\]
5.0 CONDITIONS OF USE

The Ultracon®+ screw anchors described in this report are suitable alternatives to what is specified in those codes listed in Section 1.0 of this report, subject to the following conditions:

5.1 The anchors must be installed in accordance with the manufacturer’s published installation instructions and applicable and 2018 and 2015 IBC Section 1905.1.8, 2009 IBC Section 1908.1.9, and Section 4.1 of this report as applicable (lbf or kN). For the 2012 IBC, Section 1905.1.9 shall be omitted.

5.2 Anchor sizes, dimensions, and minimum embedment depths are as set forth in this report. In case of a conflict, this report governs.

5.3 Anchors must be installed in uncracked normal-weight concrete and lightweight concrete having a specified compressive strength, f'c, of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

5.4 The values of f'c used for calculation purposes must not exceed 8,000 psi (55.2 MPa).

5.5 Strength design values must be established in accordance with Section 4.1 of this report.

5.6 Allowable design values must be established in accordance with Section 4.2 of this report.

5.7 Anchor spacing(s) and edge distance(s), and minimum member thickness, must comply with Table 1 of this report, unless otherwise noted.

5.8 Prior to installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.

5.9 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of anchors subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.

5.10 Anchors must not be installed in regions of concrete where cracking has occurred or where analysis indicates cracking may occur (f' > f_y), subject to the conditions of this report.

5.11 The anchors may be used to resist short-term loading due to wind, and for seismic load combinations are limited to locations designated as Seismic Design Categories A and B under the IBC, subject to the conditions of this report.

5.12 Anchors are not permitted to support fire-resistance-rated construction. Where not otherwise prohibited by code, anchors are permitted for installation in fire-resistance-rated construction provided that at least one of the following conditions is fulfilled:

- Anchors that support gravity load–bearing structural elements are within a fire-resistance-rated envelope or a fire-resistance-rated membrane, are protected by approved fire-resistance-rated materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
- Anchors are used to resist wind or seismic forces only.
- Anchors are used to support nonstructural elements.

5.13 Anchors have been evaluated for reliability against brittle failure and found to be not significantly sensitive to stress-induced hydrogen embrittlement.

5.14 Use of anchors is limited to dry, interior locations.

5.15 See ESR-3213 for installations in which Ultracon+ screw anchors are used in contact with treated wood.

5.16 Special inspection must be provided in accordance with Section 4.4.

5.17 Anchors are manufactured under an approved quality control program with inspections by ICC-ES.
6.0 EVIDENCE SUBMITTED

6.1 Data in accordance with the ICC-ES Acceptance Criteria for Mechanical Anchors in Concrete Elements (AC193), dated October 2017 (Editorially revised April 2018), which incorporates requirements in ACI 355.2-07 / ACI 355.2-04, for use in uncracked concrete.

6.2 Quality control documentation.

7.0 IDENTIFICATION

7.1 The Ultracon+ anchors are identified in the field by dimensional characteristics and packaging. A length letter code is stamped on each anchor head. Packages are identified with the anchor name; part number; type; anchor size and length; quantity; the company name as set forth in Section 3.1 of this report; and the evaluation report number (ESR-3068).

7.2 The report holder’s contact information is the following:

DEWALT
701 EAST JOPPA ROAD
TOWSON, MARYLAND 21286
(800) 524-3244
www.DEWALT.com
anchors@DEWALT.com

7.3 The Additional Listees’ contact information is the following:

ALL POINTS SCREW, BOLT & SPECIALTY
1590 NW 27TH AVENUE, #9
POMPANO BEACH, FLORIDA 33069
info@allpointsscrew.com

THE HILLMAN GROUP
10590 HAMILTON AVENUE
CINCINNATI, OHIO 45231
info@hillmangroup.com
<table>
<thead>
<tr>
<th>Anchor Property / Setting Information</th>
<th>Symbol</th>
<th>Units</th>
<th>$\frac{3}{16}$ in.</th>
<th>$\frac{1}{4}$ in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal outside anchor diameter</td>
<td>d_a</td>
<td>in.</td>
<td>0.145 (3.7)</td>
<td>0.185 (4.7)</td>
</tr>
<tr>
<td>Nominal drill bit diameter</td>
<td>d_{sl}</td>
<td>in.</td>
<td>$\frac{5}{32}$ Ultracon+ bit</td>
<td>$\frac{3}{16}$ Ultracon+ bit</td>
</tr>
<tr>
<td>Ultracon+ bit tolerance range</td>
<td></td>
<td>in.</td>
<td>0.170 to 0.176</td>
<td>0.202 to 0.206</td>
</tr>
<tr>
<td>Nominal embedment depth</td>
<td>h_{nom}</td>
<td>in. (mm)</td>
<td>$\frac{3}{4}$ (44)</td>
<td>$\frac{3}{4}$ (44)</td>
</tr>
<tr>
<td>Effective embedment</td>
<td>h_{ef}</td>
<td>in. (mm)</td>
<td>1.23 (32.2)</td>
<td>1.23 (32.2)</td>
</tr>
<tr>
<td>Minimum member thickness</td>
<td>h_{min}</td>
<td>in. (mm)</td>
<td>$\frac{3}{4}$ (83)</td>
<td>$\frac{3}{4}$ (83)</td>
</tr>
<tr>
<td>Minimum edge distance</td>
<td>c_{min}</td>
<td>in. (mm)</td>
<td>$\frac{3}{4}$ (44)</td>
<td>$\frac{3}{4}$ (44)</td>
</tr>
<tr>
<td>Minimum spacing distance</td>
<td>s_{min}</td>
<td>in. (mm)</td>
<td>1 (25)</td>
<td>2 (51)</td>
</tr>
<tr>
<td>Minimum hole depth4</td>
<td>h_o</td>
<td>in. (mm)</td>
<td>$h_{nom} + \frac{1}{4}$ (6.4)</td>
<td>$h_{nom} + \frac{1}{4}$ (6.4)</td>
</tr>
<tr>
<td>Minimum overall anchor length2,3</td>
<td>ℓ_{anch}</td>
<td>in. (mm)</td>
<td>$2\frac{3}{4}$ (57)</td>
<td>$2\frac{3}{4}$ (57)</td>
</tr>
<tr>
<td>Maximum installation torque</td>
<td>T_{screw} or $T_{inst,max}$</td>
<td>ft-lb.</td>
<td>Not applicable using Ultracon+ installation socket tool</td>
<td></td>
</tr>
<tr>
<td>Hex head wrench / socket size</td>
<td>d_h</td>
<td>in.</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{5}{32}$</td>
</tr>
<tr>
<td>Hex head height</td>
<td></td>
<td>in.</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{5}{32}$</td>
</tr>
<tr>
<td>Flat head bit tip size</td>
<td></td>
<td>No.</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Effective tensile stress area</td>
<td>A_{te}</td>
<td>in.2</td>
<td>0.0162</td>
<td>0.0268</td>
</tr>
<tr>
<td>Minimum specified ultimate strength</td>
<td>f_{ut}</td>
<td>psi</td>
<td>100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Minimum specified yield strength</td>
<td>f_{ya}</td>
<td>psi</td>
<td>80,000</td>
<td>80,000</td>
</tr>
<tr>
<td>Mean axial stiffness, uncracked concrete5</td>
<td>f_{mean}</td>
<td>103 lbf/in.</td>
<td>50.9</td>
<td>84.6</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 ft-lb = 1.356 N-m, 1 psi = 0.0069 N/mm2 (MPa).

1The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable. See Figure 1 for location of dimensions.

2The listed minimum overall anchor length is based on anchor sizes commercially available at the time of publication compared with the requirements to achieve the minimum nominal embedment depth and consideration of a fixture attachment. See the anchor detail (Figure 1) for hex head and flat head screw anchors. The overall anchor length of the hex head versions is measured from the underside of the head to the tip of the anchor; for the flat head versions the overall anchor length is measured from the top of the head to the tip of the anchor.

3The minimum overall anchor length for the hex head versions can be 1.75-inch (44 mm) provided the fixture attachment does not exceed 0.036-inch (0.91 mm) in thickness.

4The actual minimum hole depth can be calculated as $h_o = \ell_{anch} - t + $\frac{1}{4}$ inch.

5Mean values shown; actual stiffness varies considerably depending on concrete strength, loading and geometry of application.

FIGURE 1—SCREW ANCHOR DETAIL (HEX AND FLAT HEAD)

FIGURE 2—ULTRACON+ SCREW ANCHOR AND DRILL BITS
TABLE 2—ULTRACON+ LENGTH IDENTIFICATION CODE SYSTEM

<table>
<thead>
<tr>
<th>Length ID marking on head</th>
<th>□</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall anchor length, (l_{\text{anch}}), (inches)</td>
<td>From</td>
<td>1</td>
<td>1(\frac{1}{2})</td>
<td>2</td>
<td>2(\frac{1}{2})</td>
<td>3</td>
<td>3(\frac{1}{2})</td>
<td>4</td>
<td>4(\frac{1}{2})</td>
<td>5</td>
<td>5(\frac{1}{2})</td>
</tr>
<tr>
<td>Up to but not including</td>
<td>1(\frac{1}{2})</td>
<td>2</td>
<td>2(\frac{1}{2})</td>
<td>3</td>
<td>3(\frac{1}{2})</td>
<td>4</td>
<td>4(\frac{1}{2})</td>
<td>5</td>
<td>5(\frac{1}{2})</td>
<td>6</td>
<td>6(\frac{1}{2})</td>
</tr>
</tbody>
</table>

1.) Using the proper Ultracon+ drill bit size, drill a hole into the base material to the required depth, \(h_{\text{ho}} \), which is a 1/4-inch deeper than the minimum embedment depth, \(h_{\text{nom}} \). The tolerances of the Ultracon+ bit used must meet the tolerance range in Table 1.

2.) Remove dust and debris from hole during drilling (e.g. dust extractor) or following drilling (e.g. suction, forced air) to extract loose particles left from drilling.

3.) Attach a Ultracon+ installation socket tool for the selected anchor size to a percussion drill and set the drill to rotary only mode. Mount the screw anchor head into the socket. For flat head versions a bit tip must be used with the socket tool.

4.) Place the point of the Ultracon+ anchor through the fixture into the predrilled hole and drive the anchor until it is fully seated at the proper embedment. The socket tool will automatically disengage from the head of the Ultracon+.

FIGURE 3—ULTRACON+ INSTALLATION INSTRUCTIONS

TABLE 3—TENSION DESIGN INFORMATION FOR ULTRACON+ ANCHORS IN CONCRETE\(^1,2\)

<table>
<thead>
<tr>
<th>Design Characteristic</th>
<th>Notation</th>
<th>Units</th>
<th>Nominal Anchor Size (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\frac{3}{16})</td>
</tr>
<tr>
<td>Anchor category</td>
<td>1, 2 or 3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Nominal embedment depth</td>
<td>(h_{\text{nom}})</td>
<td>in. (mm)</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>Steel strength in tension(^5)</td>
<td>(N_{\text{s,ul}})</td>
<td>lbf (kN)</td>
<td>1,620 (7.2)</td>
</tr>
<tr>
<td>Reduction factor for steel strength(^3)</td>
<td>(\phi)</td>
<td>-</td>
<td>0.65</td>
</tr>
<tr>
<td>Concrete breakout in tension(ACI 318-14 17.4.2 or ACI 318-11 D.5.2)(^7)</td>
<td>(k_{\text{unc}})</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Effective embedment</td>
<td>(h_{\text{ef}})</td>
<td>in. (mm)</td>
<td>1.23</td>
</tr>
<tr>
<td>Effectiveness factor for uncracked concrete</td>
<td>(k_{\text{unc}})</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Modification factor for concrete(^6)</td>
<td>(k_{\text{m,ct}})</td>
<td>-</td>
<td>1.0 (see note 5)</td>
</tr>
<tr>
<td>Critical edge distance</td>
<td>(\psi_{\text{c,ct}})</td>
<td>in. (mm)</td>
<td>3</td>
</tr>
<tr>
<td>Critical edge distance</td>
<td>(\psi_{\text{c,ct}})</td>
<td>in. (mm)</td>
<td>3 (76)</td>
</tr>
<tr>
<td>Reduction factor for concrete breakout strength(^3)</td>
<td>(\phi)</td>
<td>-</td>
<td>0.65 (Condition B)</td>
</tr>
<tr>
<td>Pullout strength in tension(ACI 318-14 17.4.3 or ACI 318-11 D.5.3)(^9)</td>
<td>(N_{\text{p,unc}})</td>
<td>lbf (kN)</td>
<td>635 (2.8)</td>
</tr>
<tr>
<td>Reduction factor for pullout strength(^3)</td>
<td>(\phi)</td>
<td>-</td>
<td>0.65 (Condition B)</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 ksi = 6.895 N/mm\(^2\), 1 lbf = 0.0044 kN.
TABLE 4—SHEAR DESIGN INFORMATION FOR ULTRACON+ ANCHORS IN CONCRETE1,2

<table>
<thead>
<tr>
<th>Design Characteristic</th>
<th>Notation</th>
<th>Units</th>
<th>Nominal Anchor Size (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchor category</td>
<td>1, 2 or 3</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Nominal embedment depth</td>
<td>(h_{nom})</td>
<td>in. (mm)</td>
<td>(1\frac{3}{4}) (44)</td>
</tr>
<tr>
<td>STEEL STRENGTH IN SHEAR(ACI 318-14 17.5.1 or ACI 318-11 D.6.1)4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel strength in shear9</td>
<td>(V_{sa})</td>
<td>lbf (kN)</td>
<td>810 (3.6)</td>
</tr>
<tr>
<td>Reduction factor for steel strength3</td>
<td>(\phi)</td>
<td>-</td>
<td>0.60</td>
</tr>
<tr>
<td>CONCRETE BREAKOUT IN SHEAR(ACI 318-14 17.5.2 or ACI 318-11 D.6.2)9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load bearing length of anchor ((h_{ef}) or 8d₀, whichever is less)</td>
<td>(\ell_e)</td>
<td>in. (mm)</td>
<td>1.23 (32)</td>
</tr>
<tr>
<td>Reduction factor for concrete breakout strength3</td>
<td>(\phi)</td>
<td>-</td>
<td>0.70 (Condition B)</td>
</tr>
<tr>
<td>PRAWYOUT STRENGTH IN SHEAR (ACI 318-14 17.5.3 or ACI 318-11 D.6.3)9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient for pryout strength</td>
<td>(k_{cp})</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>Effective embedment</td>
<td>(h_{ef})</td>
<td>in. (mm)</td>
<td>1.23 (32)</td>
</tr>
<tr>
<td>Reduction factor for pryout strength3</td>
<td>(\phi)</td>
<td>-</td>
<td>0.70 (Condition B)</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN.

Notes for Tables 3 and 4:
1 The data in this table is intended to be used with the design provisions of ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.
2 Installation must comply with published instructions and details.
3 All values of \(\phi \) were determined from the load combinations of IBC Section 1605.2, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of \(\phi \) must be determined in accordance with ACI 318-11 D.4.4. For reinforcement that meets ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable, requirements for Condition A, see ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, for the appropriate \(\phi \) factor.
4 The Ultracon+ anchor is considered a brittle steel element as defined by ACI 318-14 2.3 or ACI 318-11 D.1, as applicable.
5 Tabulated values for steel strength in tension must be used for design.
6 For all design cases use \(\Psi_{c,N} = 1.0 \). The effectiveness factor for uncracked concrete \((k_{\text{uncr}}) \) must be used.
7 For all design cases use \(\Psi_{c,P} = 1.0 \). The value of \(N_{\text{Puncr}} \) may be increased in accordance with Section 4.1.4 of this report.
8 Anchors are permitted to be used in lightweight concrete in accordance with Section 4.1.11 of this report.
9 Tabulated values for steel strength in shear must be used for design.

TABLE 5—EXAMPLE ALLOWABLE STRESS DESIGN VALUES FOR ILLUSTRATIVE PURPOSES1,2,3,4,5,6,7,8,9

<table>
<thead>
<tr>
<th>Anchor Diameter (inch)</th>
<th>Nominal Embedment Depth (inches)</th>
<th>Effective Embedment (inches)</th>
<th>Allowable Tension Load (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/16</td>
<td>1 3/4</td>
<td>1.23</td>
<td>280</td>
</tr>
<tr>
<td>1/4</td>
<td>1 3/4</td>
<td>1.23</td>
<td>410</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 lbf = 0.0044 kN.

1 Single anchor with static tension load only.
2 Concrete determined to remain uncracked for the life of the anchorage.
3 Load combinations are taken from ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable (no seismic loading considered).
4 Assumes 30% dead load and 70% live load, controlling load combination 1.2D + 1.6L.
5 Calculation of weighted average for conversion factor \(\kappa = 1.2(0.3) + 1.6(0.7) = 1.48 \).
6 \(f'_c = 2,500 \) psi (normal weight concrete).
7 \(C_{\text{1st}} = C_{\text{2nd}} \leq C_{\text{uncr}} \).
8 \(h \geq h_{\text{nom}} \).
9 Values are for Condition B where supplementary reinforcement in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, is not provided.
1.0 REPORT PURPOSE AND SCOPE

Purpose:
The purpose of this evaluation report supplement is to indicate that the Ultracon+ Screw Anchor in Uncracked Concrete, described in ICC-ES evaluation report ESR-3068, have also been evaluated for compliance with the codes noted below as adopted by the Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:
- 2020 City of Los Angeles Building Code (LABC)
- 2020 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The Ultracon+ Screw Anchor in Uncracked Concrete, described in Sections 2.0 through 7.0 of the evaluation report ESR-3068, comply with the LABC Chapter 19, and the LARC, and are subject to the conditions of use described in this supplement.

3.0 CONDITIONS OF USE

The Ultracon+ Screw Anchor in Uncracked Concrete described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report ESR-3068.
- The design, installation, conditions of use and identification of the anchors are in accordance with the 2018 International Building Code® (IBC) provisions noted in the evaluation report ESR-3068.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17 as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.
- The allowable and strength and design values listed in the evaluation report and tables are for the connection of the anchors to the concrete. The connection between the anchors and the connected members shall be checked for capacity (which may govern).
- For use in wall anchorage assemblies to flexible diaphragm applications, anchors shall be designed per the requirements of City of Los Angeles Information Bulletin P/BC 2020-071.

This supplement expires concurrently with the evaluation report, reissued July 2020.
DIVISION: 03 00 00—CONCRETE
Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS
Section: 05 05 19—Post-installed Concrete Anchors

REPORT HOLDER:
DEWALT

EVALUATION SUBJECT:
ULTRACON®+ SCREW ANCHORS IN UNCRACKED CONCRETE (DEWALT)

1.0 REPORT PURPOSE AND SCOPE
Purpose:
The purpose of this evaluation report supplement is to indicate that the Ultracon+ Screw Anchor in Uncracked Concrete, recognized in ICC-ES master evaluation report ESR-3068, has also been evaluated for compliance with the codes noted below.

Applicable code editions:
- 2017 Florida Building Code—Building
- 2017 Florida Building Code—Residential

2.0 CONCLUSIONS
The Ultracon+ Screw Anchor in Uncracked Concrete, described in Sections 2.0 through 7.0 of the master evaluation report ESR-3068, complies with the Florida Building Code—Building and the Florida Building Code—Residential, provided the design and installation are in accordance with the 2015 International Building Code® provisions noted in the master report.

Use of the Ultracon+ Screw Anchor in Uncracked Concrete has also been found to be in compliance with the High-Velocity Hurricane Zone (HVHZ) provisions of the Florida Building Code—Building and the Florida Building Code—Residential.

For products falling under Florida Rule 9N-3, verification that the report holder’s quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued July 2020.