DIVISION: 05 00 00—METALS
SECTION: 05 40 00—COLD-FORMED METAL FRAMING

REPORT HOLDER:
ALPINE ENGINEERED PRODUCTS, INC.
2400 LAKE ORANGE DRIVE, SUITE 150
ORLANDO, FLORIDA 32837

EVALUATION SUBJECT:
ALPINE TRUSSTEEL SECTIONS
1.0 SUBJECT

Alpine TrusSteel Sections

2.0 PROPERTY FOR WHICH EVALUATION IS SOUGHT

Structural

3.0 DESCRIPTION

3.1 General

Alpine TrusSteel Sections consist of four series of framing member profiles that are intended for use as components of truss assemblies to transfer imposed loads to supporting construction. The Alpine TrusSteel Sections are cold rolled steel with a “U” cross-section. Each member within a series has identical cross-sectional dimensions except for the thickness of the steel from which the members are fabricated. See Figures 1, 2, 3 and 4 of this report.

3.2 Section Types

3.2.1 Series 1

The three Alpine TrusSteel Sections in Series 1 are identified as 28TSC2.75 1.5 x 2.75-28-55KSI G60, 33TSC2.75 1.5 x 2.75-33-55KSI G60 and 43TSC2.75 1.5 x 2.75-43-55KSI G60 and have uncoated design thicknesses of 0.0299 inches (0.76 mm), 0.0346 inches (0.88 mm) and 0.0451 inches (1.15 mm) respectively. See Figure 1 of this report.

3.2.2 Series 2

The four Alpine TrusSteel Sections in Series 2 are identified as 28TSC4.00 2.5X4.00-28-55KSI G60, 33TSC4.00 2.5X4.00-33-55KSI G60, 43TSC4.00 2.5X4.00-43-55KSI G60 and 54TSC4.00 2.5X4.00-54-55KSI G60 and have uncoated design thicknesses of 0.0299 in. (0.76 mm), 0.0346 in. (0.88 mm), 0.0451 in. (1.15 mm) and 0.0566 in. (1.44 mm), respectively. See Figure 2 of this report.

3.2.3 Series 3

The one Alpine TrusSteel splice section in Series 3 is identified as 33TSCS2.75 1.41X2.47-33-55KSI G60 and has an uncoated design thickness of 0.0346 in. (0.88 mm). See Figure 3 of this report.

3.2.4 Series 4

The one Alpine TrusSteel splice section in Series 4 is identified as 54TSCS4.00 2.37X3.38-54-55KSI G60 and has an uncoated design thickness of 0.0566 in. (1.44 mm). See Figure 4 of this report.

3.3 Materials

The Alpine TrusSteel Sections are formed from ASTM A653, Structural Steel, Grade 50, Class 1 steel having a minimum yield strength of 55,000 psi, a minimum tensile strength of 65,000 psi, and a hot-dipped galvanized coating conforming to ASTM A653-98, G60.

4.0 INSTALLATION

The design and construction of the Alpine TrusSteel Sections shall be in accordance with the cold-formed steel structural design standard referenced by, and the requirements of, the BOCA National Building Code/1996 (Section 2206), the 1997 Standard Building Code (Section 2204), and the 1997 Uniform Building Code (Section 2217), as applicable. The allowable design properties and allowable loads indicated in Tables 1 and 2 of this report shall be used in the structural design of the Alpine TrusSteel Sections.

The Alpine TrusSteel Sections are designed for use as components of truss assemblies. The design and fabrication of truss assemblies fabricated from Alpine TrusSteel sections are not within the scope of this report. Where confirmation of truss assembly design is requested, procedures in Section F of the AISI Specification for the Design of Cold-Formed Steel Structural Members, as referenced in the BOCA® National Building Code/1996, the 1997 Standard Building Code®, and the 1997 Uniform Building Code™ shall be used as guidelines.

5.0 IDENTIFICATION

*Revised July 2015
Alpine TrusSteel Sections shall be individually marked with the manufacturer’s name and member identification, as described in Section 3.2 of this report, the ICC-ES Legacy evaluation report number (NER-529), and the minimum uncoated steel thickness.

Each bundle of Alpine TrusSteel Sections shall be provided with a label containing the manufacturer’s name and address, type of member, production date and NEW report number.

6.0 EVIDENCE SUBMITTED

6.2 Computer input data and output results from Cold-Formed Steel (CFS) Design Software for the Alpine TrusSteel Sections, dated December 20, 1996, prepared, signed and sealed by Stuart Lee Lewis, P.E., for the first series of Alpine TrusSteel Sections.

6.3 Computer input data and output results from Cold-Formed Steel (CFS) Design Software for the Alpine TrusSteel Sections; dated August 20, 1998, for the second and third series, and September 1, 1998, for the fourth series; prepared, signed and sealed by Sowrirajan Raghavachary, P.E.

6.4 Calculations for the verification of computer program outputs, dated November 26, 1996, prepared, signed and sealed by Stuart Lee Lewis, P.E.

6.5 Quality Control and Inspection Procedure Manual for TrusSteel, manufactured at Unimast Incorporated, Morrow, Georgia, dated March 22, 1999 (revised).

7.0 CONDITIONS OF USE

The ICC-ES Subcommittee for the National Evaluation Service finds that Alpine TrusSteel Sections described in this report comply with the BOCA® National Building Code/1996, the 1997 Standard Building Code®, and the 1997 Uniform Building Code®, subject to the following conditions:

7.1 Design and construction shall be in accordance with this report and the manufacturer’s assembly instructions. This report does not evaluate structural connections of the Alpine TrusSteel Sections.

7.2 Alpine Engineered Products, Inc., shall provide the user of this report with complete instructions on the assembly of the Alpine TrusSteel Sections. When manufacturer’s assembly instructions differ from this report, this report shall be null and void. Information within the manufacturer’s assembly instructions that is not specifically evaluated in this report is beyond the scope of this report.

7.3 Design calculations and details, using the values in the tables of this report, for specific applications shall be furnished to the code official verifying compliance with this report and the applicable code. The individual preparing such documents shall possess the necessary credentials regarding competency and qualifications as required by the applicable code and the professional registration laws of the state where the construction is undertaken. The documents shall describe the connections and installation of the Alpine TrusSteel Sections. The construction documents shall be available on the job site during installation.

7.4 The uncoated minimum steel thickness of cold-formed members discussed in this report, as delivered to the job site, shall be a minimum of 95 percent of the uncoated thickness used in the design.

7.5 This report is limited to TrusSteel sections manufactured at the Alpine Engineered Products, Inc., TruSteel, a division of ITW Building Components Group Inc. in Pontotoc, Mississippi.

7.6 Recognition of complete truss or other assemblies fabricated from the TrusSteel Sections is beyond the scope of this report. Trusses shall be fabricated by an approved fabricator monitored by a quality assurance program in accordance with the applicable code.

7.7 This report is subject to periodic re-examination. For information on the current status of this report, consult the ICC-ES website.
Notes:
1. All dimensions indicated in Figures 1 to 4 are in inches.
2. 28, 33, 43 and 54 denote the uncoated minimum steel thickness in thousandths of an inch, as delivered to the job site.

*thesE DRAwINGS ARE for ILLUSTRATION PURPOSES only. They ARE NOT INTENDED FOR USE AS CONSTRUCTION DOCUMENTS FOR THE PURPOSE OF DESIGN, FABRICATION OR ERECTION.
TABLE 1 — STRUCTURAL PROPERTIES OF ALPINE STEEL SECTIONS

<table>
<thead>
<tr>
<th>SECTION NAME</th>
<th>T</th>
<th>A</th>
<th>I₁</th>
<th>r₁</th>
<th>I₂</th>
<th>r₂</th>
<th>Aₑ</th>
<th>+Sₑ</th>
<th>-Sₑ</th>
<th>xₑ</th>
<th>yₑ</th>
<th>Jₑ</th>
<th>Cₑ</th>
<th>rₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td>20TSC2.75, 1.5G2.75-26.98S1.69</td>
<td>0.220</td>
<td>0.251</td>
<td>0.260</td>
<td>0.986</td>
<td>0.070</td>
<td>0.071</td>
<td>0.2416</td>
<td>0.1754</td>
<td>0.1754</td>
<td>0.0000</td>
<td>2.668</td>
<td>7.480</td>
<td>0.1183</td>
<td>2.0140</td>
</tr>
<tr>
<td>20TSC2.75, 1.5G2.75-36.98S1.69</td>
<td>0.220</td>
<td>0.251</td>
<td>0.260</td>
<td>0.986</td>
<td>0.070</td>
<td>0.071</td>
<td>0.2416</td>
<td>0.1754</td>
<td>0.1754</td>
<td>0.0000</td>
<td>2.668</td>
<td>7.480</td>
<td>0.1183</td>
<td>2.0140</td>
</tr>
<tr>
<td>20TSC2.75, 1.5G2.75-48.98S1.69</td>
<td>0.220</td>
<td>0.251</td>
<td>0.260</td>
<td>0.986</td>
<td>0.070</td>
<td>0.071</td>
<td>0.2416</td>
<td>0.1754</td>
<td>0.1754</td>
<td>0.0000</td>
<td>2.668</td>
<td>7.480</td>
<td>0.1183</td>
<td>2.0140</td>
</tr>
<tr>
<td>20TSC2.75, 1.5G2.75-36.98S1.69</td>
<td>0.220</td>
<td>0.251</td>
<td>0.260</td>
<td>0.986</td>
<td>0.070</td>
<td>0.071</td>
<td>0.2416</td>
<td>0.1754</td>
<td>0.1754</td>
<td>0.0000</td>
<td>2.668</td>
<td>7.480</td>
<td>0.1183</td>
<td>2.0140</td>
</tr>
<tr>
<td>20TSC2.75, 1.5G2.75-48.98S1.69</td>
<td>0.220</td>
<td>0.251</td>
<td>0.260</td>
<td>0.986</td>
<td>0.070</td>
<td>0.071</td>
<td>0.2416</td>
<td>0.1754</td>
<td>0.1754</td>
<td>0.0000</td>
<td>2.668</td>
<td>7.480</td>
<td>0.1183</td>
<td>2.0140</td>
</tr>
</tbody>
</table>

Notes for Table 1:
- **T** = Design steel thickness;
- **A** = Gross sectional area;
- **I₁** = Moment of inertia about x-x axis;
- **r₁** = Gross radius of gyration about x-x axis;
- **I₂** = Gross moment of inertia about y-y axis;
- **r₂** = Gross radius of gyration about y-y axis;
- **Aₑ** = Effective sectional area with stress in extreme fiber at yield stress (Fy);
- **Sₑ** = Minimum effective section modulus about major x-x axis; +Sₑ is for positive bending (compression at the closed end of the section) and -Sₑ is for negative bending (compression at the open end of the section);
- **xₑ, yₑ** = Distance from shear center to centroid along the principal x and y axes;
- **Jₑ** = St. Venant torsional constant;
- **Cₑ** = Toroidal warping constant of the cross section;
- **rₑ** = Polar radius of gyration about shear center.

Legend:
1 inch = 25.4 mm; 1 lb = 4.448 lbf;
TABLE 2—ALLOWABLE VALUES

<table>
<thead>
<tr>
<th>SECTION NAME</th>
<th>TENSION T_a lbs.</th>
<th>COMPRESSION P_a lbs.</th>
<th>POS. MOMENT $+M_a$ in-lbs.</th>
<th>NEG. MOMENT $-M_a$ in-lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>28TSC2.75</td>
<td>8283</td>
<td>6931</td>
<td>5787</td>
<td>5787</td>
</tr>
<tr>
<td>1.52(2.75-26-5)ksi G60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33TSC2.75</td>
<td>9530</td>
<td>8203</td>
<td>6607</td>
<td>6607</td>
</tr>
<tr>
<td>1.52(2.75-33-5)ksi G60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43TSC2.75</td>
<td>12263</td>
<td>10683</td>
<td>8354</td>
<td>8354</td>
</tr>
<tr>
<td>1.52(2.75-43-5)ksi G60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28TSC4.00</td>
<td>12966</td>
<td>8849</td>
<td>11497</td>
<td>11497</td>
</tr>
<tr>
<td>2.5(4.00-28-5)ksi G60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33TSC4.00</td>
<td>14466</td>
<td>10551</td>
<td>13991</td>
<td>13991</td>
</tr>
<tr>
<td>2.5(4.00-33-5)ksi G60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43TSC4.00</td>
<td>18722</td>
<td>14442</td>
<td>18716</td>
<td>18716</td>
</tr>
<tr>
<td>2.5(4.00-43-5)ksi G60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54TSC4.00</td>
<td>23272</td>
<td>18907</td>
<td>22977</td>
<td>22977</td>
</tr>
<tr>
<td>2.5(4.00-54-5)ksi G60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33TSCS2.75</td>
<td>723</td>
<td>4317</td>
<td>1408</td>
<td>1408</td>
</tr>
<tr>
<td>1.41(2.75-33-5)ksi G60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54TSCS4.00</td>
<td>17098</td>
<td>10307</td>
<td>2395</td>
<td>2395</td>
</tr>
<tr>
<td>2.37(3.38-54-5)ksi G60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T_a = Allowable axial tension assuming no screw holes

P_a = Allowable axial compression for a fully braced section

M_a = Allowable bending moment about major xx axis; if bending stress only exists with lateral buckling precluded. Positive moment causes compression at the closed end of the section and negative moment causes compression at the open end of the section.

NOTE: 1 lb. = 4.448 N, 1 in-lb. = 112.945 N·mm